Armadillo-500 厚X

ハードウェアマニュアル

Version 1.0.0

株式会社アットマークテクノ

http://www.atmark-techno.com/

http://armadillo.atmark-techno.com/

目次

1.	はじめに	1
	1.1. 本書の構成	
	注意事項	
	2.1. 安全に関する注意事項	
	2.2. 保証に関する注意事項	
	2.3. 取り扱い上の注意事項	
	2.4. ソフトウェア使用に関しての注意事項	
	2.5. 商標について	
	概要	
	3.1. ボード概要	
	3.2. ブロック図	
	メモリマップ	
	各種インターフェース仕様	
	5.1. 各種インターフェースの配置	
	5.2. 電気的仕様	
	5.3. CON1, CON2 (LANインターフェース)	
5	5.4. CON3 (USBインターフェース 1)	
5	5.5. CON4 (USBインターフェース 2)	
5	5.6. CON5 (microSD/microMMCインターフェース)	
5	5.7. CON6 (RTCバックアップ端子)	
5	5.8. CON7 (シリアルインターフェース 1)	
5	5.9. CON8 (i.MX31 JTAGインターフェース)	
5	5.10. CON9 (LCDインターフェース)	
5	5.11. CON10 (拡張インターフェース)	17
	5.11.1. UART1 (シリアルインターフェース 1)	
	5.11.2. UART2 (シリアルインターフェース 2)	17
	5.11.3. UART5 (シリアルインターフェース 3)	
	5.11.4. USBH1 (USBインターフェース 3)	18
	5.11.5. 1-wire (1 線式 調歩同期シリアルインターフェース)	
	5.11.6. I ² C1 (I ² Cシリアルインターフェース)	
	5.11.7. SDHC2 (SD/MMCインターフェース)	
	5.11.8. GPIO (汎用入出力インターフェース)	
	5.11.9. CSI (カメラインターフェース)	
	5. 11. 10. KPP (キーパッドインターフェース)	
	5.11.11. DAM(デジタルオーディオインターフェース)	
	5.11.12. Audio (アナログオーディオインターフェース)	
5	5.12. CON11(電源入力端子)	
·	5. 12. 1. 内部電源電圧精度	
_	5.13. J1, J2 (CPUモジュール/間コネクタ)	
	5. 14. JP1 (USBインターフェース 2 設定ジャンパ)	
	5.15. JP2, JP4 (ユーザー設定ジャンパ)	
	5. 16. JP2, JP4 (ユーサー設足シャンハ)	
	• • • • • • • • • • • • • • • • • • • •	
	5.17. D5 (パワーLED)	
	5.18. D6 (ユーザーLED)	
6.	基板形状図	
7.		
8.	Appendix B CPUモジュールの信号配列	26

表目次

3	表	3-1	Armadillo-500 CPUモジュール仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3	表	3-2	Armadillo-500 FX仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3	表	4-1	Armadillo-500 FXメモリマップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3	表	5-1	各種インターフェースの内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3	表	5-2	電気的仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3	表	5-3	CON1 信号配列 ······	
3	表	5-4	CON2 (RJ45) 信号配列····································	
3	表	5-5	CON3 信号配列 ······	
3	表	5-6	CON4 信号配列 · · · · · · · · · · · · · · · · · · ·	
3	表	5-7	CON5 信号配列 ······	
3	表	5-8	CON6 信号配列 ······	
3	表	5-9	CON7 信号配列 ······	
3	表	5-10	CON8 信号配列 · · · · · · · · · · · · · · · · · · ·	
3	表	5-11	CON9 信号配列 · · · · · · · · · · · · · · · · · · ·	
		5-12	CON10 拡張機能 · · · · · · · · · · · · · · · · · · ·	
3	表	5-13	CON10 信号配列およびGPIOマルチプレクス情報·····	
		5-14	CON11 信号配列 ······	
3	表	5-15	電圧精度と最大定格電流・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5-16	J1, J2 のコネクタ型式· · · · · · · · · · · · · · · · · · ·	
		5-17	JP2, JP4 機能 · · · · · · · · · · · · · · · · · ·	
		5-18	Armadillo-500 FXの起動モード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		5-19	D6 機能 ······	
3	表	8-1	J1 信号配列 · · · · · · · · · · · · · · · · · · ·	
3	表	8-2	J2 信号配列 · · · · · · · · · · · · · · · · · · ·	28
図目	次			
	刘	3-1	Armadillo-500 FXブロック図	6
	-	5-1	各種インターフェースの配置	
Ī	义	5-2		
		6-1	Armadillo-500 FXの基板形状	
Ī	义	6-2	Armadillo-500 CPUモジュールの基板形状	
]	义	7-1	<u> </u>	
,				

1.はじめに

1.1. 本書の構成

本書は、Armadillo-500 FX を使用する上で必要な情報のうち、以下の点について記載されています。

- ハードウェア概要
- メモリマップ
- インターフェース仕様
- 基板の形状

また、Armadillo-500 CPU モジュールの詳しい仕様に関しましては、「Armadillo-500 Hardware Manual」を参照してください。

Armadillo-500 FX の機能を最大限に引き出すために、ご活用いただければ幸いです。

2.注意事項

2.1. 安全に関する注意事項

本製品を安全にご使用いただくために、特に以下の点にご注意くださいますようお願いいたします。

本製品には一般電子機器用(OA機器・通信機器・計測機器・工作機械等)に製造された半導体部品を使用しておりますので、その誤作動や故障が直接生命を脅かしたり、身体・財産等に危害を及ぼす恐れのある装置(医療機器・交通機器・燃焼制御・安全装置等)には使用しないでください。また、半導体部品を使用した製品は、外来ノイズやサージにより誤作動や故障する可能性があります。ご使用になる場合は万一誤作動、故障した場合においても生命・身体・財産等が侵害されることのないよう、装置としての安全設計(リミットスイッチやヒューズ・ブレーカ等の保護回路の設置、装置の多重化等)に万全を期されますようお願い申しあげます。

2.2. 保証に関する注意事項

● 製品保証範囲について

付属品(ソフトウェアを含みます)を使用し、取扱説明書、各注意事項に基づく正常なご使用に限り有効です。万一正常なご使用のもと製品が故障した場合は、初期不良保証期間内であれば新品交換をさせていただきます。

● 保証対象外になる場合

次のような場合の故障・損傷は、保証期間内であっても保証対象外になります。

- 1. 取扱説明書に記載されている使用方法、または注意に反したお取り扱いによる場合
- 2. 改造や部品交換に起因する場合。または正規のものではない機器を接続したことによる場合
- 3. お客様のお手元に届いた後の輸送、移動時の落下など、お取り扱いの不備による場合
- 4. 火災、地震、水害、落雷、その他の天災、公害や異常電圧による場合
- 5. AC アダプター、専用ケーブルなどの付属品について、同梱のものを使用していない場合
- 6. 修理依頼の際に購入時の付属品がすべて揃っていない場合

● 免責事項

弊社に故意または重大な過失があった場合を除き、製品の使用および、故障、修理によって発生するいかなる損害についても、弊社は一切の責任を負わないものとします。

本製品は購入時の初期不良以外の保証をおこなっておりません。保証期間は商品 到着後2週間です。本製品をご購入されましたらお手数でも必ず動作確認をおこ なってからご使用ください。本製品に対して注意事項を守らずに発生した故障に つきましては保証対象外となります。

2.3. 取り扱い上の注意事項

本製品に恒久的なダメージをあたえないよう、取り扱い時には以下のような点にご注意ください。

● 本製品の改造

本製品に改造^[1]をおこなった場合、またCPUモジュール基板の着脱をおこなった場合は**保証対象外**となりますので十分ご注意ください。

また、改造やコネクタ等の増設 [2]をおこなう場合は、作業前に必ず動作確認をおこなってください。

● 電源投入時のコネクタ着脱

本製品や周辺回路に電源が入っている状態で、USB コネクタ (CON4)、シリアルコネクタ (CON7)、JTAG インターフェース (CON8)、LCD コネクタ (CON9)、拡張コネクタ (CON10)、および CPU モジュール/FX ボード間コネクタ (J1、J2) の着脱は、絶対におこなわないでください。

● 静電気

本製品には CMOS デバイスを使用していますので、ご使用になる時までは、帯電防止対策された出荷時のパッケージ等にて保管してください。

● ラッチアップ

電源および入出力からの過大なノイズやサージ、電源電圧の急激な変動等により、使用している CMOS デバイスがラッチアップを起こす可能性があります。いったんラッチアップ状態となると、電源を切断しないかぎりこの状態が維持されるため、デバイスの破損につながることがあります。ノイズの影響を受けやすい入出力ラインには、保護回路を入れることや、ノイズ源となる装置と共通の電源を使用しない等の対策をとることをお勧めします。

● 衝撃

落下や衝撃などの強い振動を与えないでください。

2.4. ソフトウェア使用に関しての注意事項

● 本製品に含まれるソフトウェアについて

本製品に含まれるソフトウェア(付属のドキュメント等も含みます)は、現状のまま(AS IS)提供されるものであり、特定の目的に適合することや、その信頼性、正確性を保証するものではありません。また、本製品の使用による結果についてもなんら保証するものではありません。

2.5. 商標について

Armadillo は株式会社アットマークテクノの登録商標です。 その他の記載の商品名および会社名は、各社・各団体の商標または登録商標です。

^[1] コネクタ非搭載箇所へのコネクタ等の増設は除く。なお、コネクタ増設が原因での故障は保証いたしかねます。

^[2] コネクタを増設する際にはマスキングをおこない、周囲の部品に半田くず、半田ボール等付着しないよう十分にご注意ください。

3.概要

3.1. ボード概要

Armadillo-500 FXは、Freescale社製i. MX31 を搭載したCPUモジュールと、各種インターフェースのコントローラおよびコネクタで構成されています。各基板の仕様を表 3-1、表 3-2に示します。

表 3-1 Armadillo-500 CPU モジュール仕様

プロセッサ	Freescale i.MX31 ・ARM1136JF-S ・命令/データキャッシュ 16KByte/16KByte ・L2 キャッシュ 128KByte ・内部 SRAM 16KByte ・ベクタ浮動小数点コプロセッサ(VFP)搭載
CPU クロック	400MHz
水晶発振器周波数	CKIL: 32.768kHz, CKIH: 26MHz
メモリ	DDR SDRAM: 128MByte (32bit 幅) NOR Flash: 32MByte (16bit幅)¹
基板コネクタ	FX10A-140S/14-SV(ヒロセ電機) ² × 2
電源電圧	メモリ電圧:1.8V I/0 電圧:1.8~3.1V
コア電圧	$1.30 \sim 1.47V^3$
基板サイズ	$34 \times 54 \text{ mm}$
重量	約 10g
使用温度範囲	0~70℃

¹ 型式:Intel 社製 PC28F256P30B85

² 対応コネクタ型式:基板間高さ 4mm 用 FX10A-140P/14-SV(ヒロセ電機)、基板間高さ 5mm 用 FX10A-140P/14-SV1(ヒロセ電機)

³ USB OTG を使用する場合は、1.35V 以上で設計してください。(Armadillo-500FX でのコア電圧は1.4V です)

表 3-2 Armadillo-500 FX 仕様

イーサネット	10BASE-T/100BASE-TX AUTO-MDIX 対応
	調歩同期式(TTL レベル入出力)
	4チャンネル(UART×3, 1-Wire×1)
	UART1: 最大 1.875Mbps, フロー制御ピン無し, 5 ピンコネクタ
	UART2: 最大 1.875Mbps, フロー制御ピン有り(CTS, RTS, DTR, DSR, DCD, RI), 80
V.11 -2 v.19	ピン拡張コネクタ経由での利用
シリアルポート	UART5: 最大 1.875Mbps, フロー制御ピン有り(CTS, RTS), 80 ピン拡張コネクタ
	経由での利用
	同期式(TTL レベル入出力)
	2チャンネル(SPI×1, I ² C×1)
汎用入出力 (GPI0)	最大 38 ビット
	3 チャンネル (USB2.0, Host)
USB	OTG: High Speed 対応, Type-A コネクタ
000	HOST1: Full Speed 対応,80ピン拡張コネクタ経由での利用
	HOST2: High Speed 対応, Low Profile SSD コネクタ
	2スロット
SD/MMC	SDHC1: microSD スロット
	SDHC2: 80 ピン拡張コネクタ経由での利用
LCD I/F	コネクタ形状: 2mm ピッチ 2 列 40 ピン
	デジタル RGB 出力(最大解像度 800 × 600, 18bpp)
キーパッド I/F	5 x 6 マトリクス (最大 30 キー)
	デジタルオーディオ CODEC I/F×1
オーディオ	モノラルスピーカー出力 $(8\Omega1W) \times 1$
	ステレオヘッドホン出力×1
3 71.71	モノラルマイク入力×1
カレンダー時計	RTC 専用 IC 搭載(バックアップ機能付、外部バッテリー対応)
カメラ I/F	8bit パラレル入力(GPIO とマルチプレクス)
拡張 I/F	コネクタ形状: 2mm ピッチ 2 列 80 ピン
LED	LED×2
JTAG I/F	コネクタ形状: 2mm ピッチ 2 列 14 ピン
PWM 出力	1 チャンネル,分解能 8bit
基板コネクタ	FX10A-140P/14-SV (ヒロセ電機)
電源電圧	システム電源: 3.4V~5.25V
	5V 電源: USB デバイス供給、スピーカー用
消費電力(Typ.)	約 2W (CPUモジュールとインターフェースボードの消費電力含む) ^{4 5}
基板サイズ	62×100 mm
重量	T. B. D
使用温度範囲	0~60℃

 $^{^4}$ +5V 電圧を利用する USB デバイスや LCD パネルバックライト等の消費電力を除く。

⁵ Armadillo-500 FX 液晶内蔵モデルにて、USB フラッシュメモリ×2/SD メモリカード×2/SD-RAM へのアクセス繰り返し、HTTP サーバーからのファイルダウンロード繰り返し、スピーカー最大ボリュームでホワイトノイズを再生した場合。

3.2. ブロック図

Armadillo-500 FXのブロック図を図 3-1に示します。

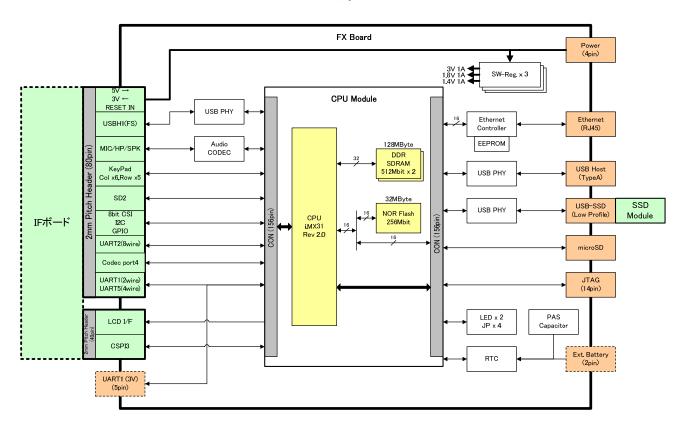


図 3-1 Armadillo-500 FX ブロック図

4.メモリマップ

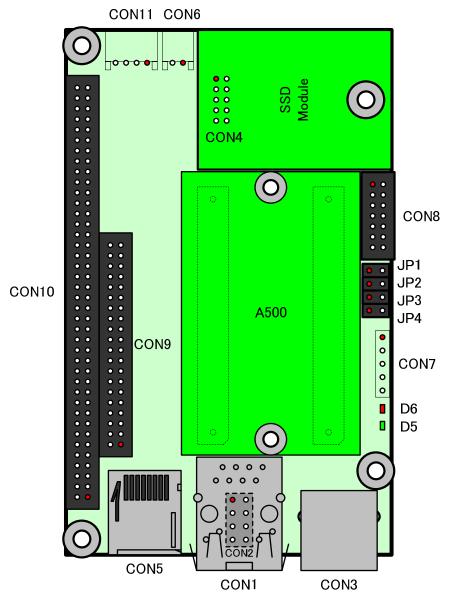

Armadillo-500 FXの物理メモリマップを表 4-1に示します。

表 4-1 Armadillo-500 FX メモリマップ

Start Address	End Address	Device	Area
0x0000 0000	0x0000 3FFF	i.MX31 Secure ROM (16KByte)	
0x0000 4000	0x0040 3FFF	Reserved	
0x0040 4000	0x0040 7FFF	i.MX31 Internal ROM (16KByte)	
0x0040 8000	0x1FFF BFFF	Reserved	
0x1FFF C000	0x1FFF FFFF	i.MX31 Internal RAM (16KByte)	
0x2000 0000	0x2FFF FFFF	Reserved	
0x3000 0000	0x7FFF FFFF	i.MX31 Internal Registers	
0x8000 0000	0x87FF FFFF	DDR SDRAM (128MByte)	CCDO
0x8800 0000	0x8FFF FFFF	Reserved	CSD0
0x9000 0000	0x9FFF FFFF	Reserved	CSD1
0xA000 0000	0xA1FF FFFF	NOR Flash Memory (32MByte)	ago
0xA200 0000	0xA7FF FFFF	Reserved	CS0
0xA800 0000	0xAFFF FFFF	Reserved	CS1
0xB000 0000	0xB1FF FFFF	Reserved	CS2
0xB200 0000	0xB3FF FFFF	Ethernet Controller (LAN9210) Internal Registers	CS3
0xB400 0000	0xB5FF FFFF	Reserved	CS4
0xB600 0000	0xB7FF FFFF	Reserved	CS5
0xB800 0000	0xB800 0FFF	Reserved	
0xB800 1000	0xB800 4FFF	i.MX31 Internal Registers	
0xB800 5000	0xFFFF FFFF	Reserved	

5.各種インターフェース仕様

5.1. 各種インターフェースの配置

※CPU モジュールと SSD モジュールを搭載した状態です。

図 5-1 各種インターフェースの配置

表 5-1 各種インターフェースの内容

記号	インターフェース	形状	備考
CON1	LANインターフェース	RJ-45	
CON2	LANインターフェース	8ピン (2.00mm ピッチ)	コネクタ非搭載
CON3	USB インターフェース 1	Type-A	
CON4	USB インターフェース 2	10 ピン (2.00mm ピッチ)	
CON5	microSD スロット		
CON6	RTC バックアップ端子	2ピン (2.00mm ピッチ)	コネクタ非搭載
CON7	シリアルインターフェース 1	5ピン (2.54mm ピッチ)	コネクタ非搭載
CON8	i.MX31 JTAGインターフェース	14 ピン (2.00mm ピッチ)	
CON9	LCD インターフェース	40 ピン (2.00mm ピッチ)	
CON10	拡張インターフェース	80 ピン (2.00mm ピッチ)	
CON11	電源入力端子	4ピン (2.00mmピッチ)	コネクタ非搭載
J1, J2	CPU モジュール/間コネクタ	156 ピン (0.5mm ピッチ)	
JP1	USB インターフェース 2 設定ジャンパ	2 ピン (2.54mm ピッチ)	
JP2, JP4	ユーザー設定ジャンパ	2 ピン (2.54mm ピッチ)	
JP3	i.MX31 起動モード設定ジャンパ	2 ピン (2.54mm ピッチ)	
D5	パワーLED(緑色)	面実装LED(1.6 × 0.8mm	
D6	ユーザーLED (赤色)	面実装LED(1.6 × 0.8mm	

5.2. 電気的仕様

入出力インターフェースの電気的仕様を 表 5-2に示します。i. MX31 のSoftware Pad Control Register (SW_PAD_CTL)で出力電流 (Std, High, Max) やスルーレート (Slow, Fast) を変更することができます。

表 5-2 電気的仕様

Symbol	Parameter	Min	Max	Unit	Conditions
VIH	Input High-Level Voltage	0.7×NVCC	NVCC	V	NVCC = +3V
VIL	Input Low-Level Voltage	0	0.3×NVCC	V	NVCC = +3V
MOH	Output High-Level	NVCC-0.15		V	IOH = -1mA
VOH	Voltage	0.8×NVCC		V	IOH = Specified Drive
WOI	O to the Level Welliam		0.15	V	IOH = 1mA
VOL	Output Low-Level Voltage		0.2×NVCC	V	IOH = Specified Drive
		-2		mA	VOH = 0.8×NVCC, Std Drive
IOH_S	High-Level Output Current, Slow Slew Rate	-4		mA	VOH = 0.8×NVCC, High Drive
	Current, Slow Slew Itale	-8		mA	VOH = 0.8×NVCC, Max Drive
	II: 1 I 10 + +	-4		mA	VOH = 0.8×NVCC, Std Drive
IOH_F	High-Level Output	-6		mA	VOH = 0.8×NVCC, High Drive
	Current, Fast Slew Rate	-8		mA	VOH = 0.8×NVCC, Max Drive
	Low-Level Output	2		mA	VOL = 0.2×NVCC, Std Drive
IOH_S	Current,	4		mA	VOL = 0.2×NVCC, High Drive
	Slow Slew Rate	8		mA	VOL = 0.2×NVCC, Max Drive
	Low-Level Output	4		mA	VOL = 0.2×NVCC, Std Drive
IOH_F	Current,	6		mA	VOL = 0.2×NVCC, High Drive
	Fast Slew Rate	8		mA	VOL = 0.2×NVCC, Max Drive
	Input Current (No PU/PD)		±1	uA	VI = NVCC or GND
	I + C + (1001 ODII)		25	uA	VI = GND
IIN	Input Current (100kΩPU)		0.1	uA	VI = NVCC
			0.25	uA	VI = GND
	Input Current (100kΩPD)		28	uA	VI = NVCC
IOZ	Tri-state Leakage Current		±2	uA	VI = NVCC or GND, I/O = High Z

5.3. CON1, CON2 (LAN インターフェース)

CON1, CON2 は 10BASE-T/100BASE-TX の LAN インターフェースです。カテゴリ 5 以上のイーサネットケーブルを接続することができます。AUTO-MDIX 機能を搭載しており、ストレートまたはクロスを自動認識して送受信端子を切り替えます。

i. MX31 にはイーサネットコントローラが内蔵されていないため、上にイーサネットコントローラ (IC4) を搭載してネットワーク機能を実現しています。イーサネットコントローラは i. MX31 のメモリバス (メモリエリア: CS3) に接続されています。

LAN コネクタ (RJ45) にはパルストランス内蔵品を使用しており、CON1 はパルストランスとイーサーネットコントローラ間の信号が、CON2 (RJ45) はパルストランス後の信号が接続されています。

ピン番号	信号名	I/0	機 能
1	TX+	Out	差動のツイストペア送信出力(+)
2	TX-	Out	差動のツイストペア送信出力(-)
3	RX+	In	差動のツイストペア受信入力(+)
4	_	_	75Ω終端、CON1 (5 ピン) とコネクタ内部で接続
5	_	_	75Ω終端、CON1 (4 ピン) とコネクタ内部で接続
6	RX-	In	差動のツイストペア受信入力(-)
7	_	_	75Ω終端、CON1 (8 ピン) とコネクタ内部で接続
8	_	_	75Ω終端、CON1 (7ピン) とコネクタ内部で接続
_	LEFT_LED	_	イーサネットコントローラの GPI01/nLED2 ピンに接続
_	RIGHT_LED	_	イーサネットコントローラの GPI02/nLED3 ピンに接続

表 5-3 CON1 信号配列(RJ45)

耒	5-4	CON2 4	宣号配列	(パルス	トランス内側)
-14	U T	OU112	O 7 OU/	\	1 / / / \ / 3 3 1

ピン番号	信号名	I/0	機能
1	TPO+		イーサネットコントローラの TP0+ピンに接続
2	TPO-		イーサネットコントローラの TPO-ピンに接続
3	CT	-	パルストランス センタータップ(+3V)
4	CT	-	パルストランス センタータップ(+3V)
5	TPI+		イーサネットコントローラの TPI+ピンに接続
6	TPI-		イーサネットコントローラの TPI-ピンに接続
7	RIGHT_LED	_	イーサネットコントローラの GPI02/nLED3 ピンに接続
8	LEFT_LED	_	イーサネットコントローラの GPI01/nLED2 ピンに接続

5.4. CON3 (USB インターフェース 1)

CON3 は USB シリアルインターフェースです。USB トランシーバを経由して i. MX31 の USB コントローラに接続されています。

- データ転送モード: USB 2.0 High Speed (480Mbps)、Full Speed (12Mbps)、Low Speed (1.5Mbps)
- 供給電源:電圧+5V、電流 500mA (Max)
- コネクタ形状: Type-A
- コントローラ: i. MX31 内蔵 USB コントローラ (USBOTG ポート)

ピン番号	信号名	I/0	機能
1	+5V	Power	USB 電源(+5V、最大 500mA の供給可能)
2	USB-	In/Out	USB のマイナス側信号
3	USB+	In/Out	USB のプラス側信号
4	GND	Power	USB 電源 (GND)

表 5-5 CON3 信号配列

※ Armadillo公式サイト (http://armadillo.atmark-techno.com/) にて、動作確認済みUSBデバイス情報を随時更新していますのでご確認ください。

5.5. CON4 (USB インターフェース 2)

CON4 は USB シリアルインターフェースです。USB トランシーバを経由して i. MX31 の USB コントローラに接続されています。

- データ転送モード:USB 2.0 High Speed(480Mbps)、Full Speed(12Mbps)、Low Speed(1.5Mbps)
- 供給電源:電圧+5V、電流 500mA (Max)
- コネクタ形状:10ピン(2.00mmピッチ)
- コントローラ: i. MX31 内蔵 USB コントローラ (USBHOST2 ポート)

表	5–6	C()N4	信号	配列	IJ

ピン番号	信号名	I/0	機 能
1	+5V	Power	USB 電源(+5V、最大 500mA の供給可能)
2	_	-	
3	USB-	In/Out	USB のマイナス側信号
4	_	-	
5	USB+	In/Out	USB のプラス側信号
6	_	-	
7	GND	Power	USB 電源 (GND)
8	_	-	
9	-	-	
10	_	-	

5.6. CON5 (microSD/microMMC インターフェース)

CON4 は microSD/microMMC インターフェースです。i. MX31 の SD/MMC コントローラ(SDHC1)に接続されています。

表 5-7 CON5 信号配列

ピン番号	信号名	I/0	機 能
1	DAT2	In/Out	データバス(bit2)、i.MX31のSD1_DATA2ピンに接続
2	CD/DAT3	In/Out	データバス(bit3)、i.MX31のSD1_DATA3ピンに接続
3	CMD	In/Out	コマンド/レスポンス、i.MX31のSD1_CMDピンに接続
4	VDD	Power	電源 (+3V)
5	CLK	Out	クロック、i. MX31 の SD1_CLK ピンに接続
6	VSS	Power	電源(GND)
7	DAT0	In/Out	データバス(bit0)、i.MX31のSD1_DATA0ピンに接続
8	DAT1	In/Out	データバス(bit1)、i.MX31のSD1_DATA1ピンに接続
9	CD_SW	In	カード検出(Low:カード挿入、High:カード未挿入)、i. MX31
			の ATA_DMACK (GPI03_30) ピンに接続
10	GND	Power	電源 (GND)

[※] Armadillo公式サイト(http://armadillo.atmark-techno.com/)にて、動作確認済みmicroSD/microMMCカード情報を随時更新していますのでご確認ください。

5.7. CON6 (RTC バックアップ端子)

CON6 は上に搭載されているリアルタイムクロック (IC10) のバックアップ端子です。リアルタイムクロックはポリアセンキャパシタ (PAS) のバックアップにより電源切断後も一定時間動作しますが、長時間電源を切断されても時刻データを保持したい場合に別途外付けバッテリーを接続することができます。(計時可能最低電圧:約+1.1V、リアルタイムクロック消費電流:約1uA)

i. MX31 にはリアルタイムクロックコントローラを内蔵していますが、バックアップ保持時間改善のためリアルタイムクロック専用 IC を上に搭載しています。リアルタイムクロック専用 IC は i. MX31 の I^2 C コントローラ(ポート 2)に接続されています。

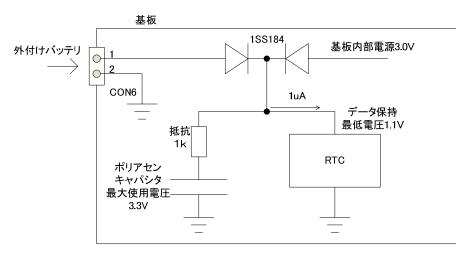


図 5-2 外付けバッテリーの接続

リアルタイムクロックの保持に使用しているポリアセンキャパシタは温度によって寿命/充放電回数が著しく異なります。また、ポリアセンキャパシタは交換不可です。そのため、リアルタイムクロックバックアップが重要なシステムにおいては、別途バックアップ用電池をご使用下さい。バックアップ用電池をご利用になる場合、電圧は 3.3V を越えないように設計してください。

表 5-8 CON6 信号配列

ピン番号	信号名	I/0	機能
1	EXT_BAT	Power	リアルタイムクロックのバックアップ用電源入力
2	GND	Power	電源(GND)

CON6 には+3.3V 以上の電圧を加えないでください。内部デバイスが破壊する可能性があります。

5.8. CON7 (シリアルインターフェース 1)

CON7 は非同期 (調歩同期) シリアルインターフェースです。i. MX31 の UART コントローラに接続されています。

● 信号入出力レベル:+3V I/0 レベル

● 最大データ転送レート: 1.875Mbps

● フロー制御:無し

● コントローラ:i. MX31 内蔵 UART コントローラ (ポート 1)

表 5-9 CON7 信号配列

ピン番号	信号名	I/0	機能
1	_	_	
2	RXD1	In	受信データ、i. MX31 の RXD1 ピンに接続
3	TXD1	Out	送信データ、i.MX31 の TXD1 ピンに接続
4	+3V	Power	電源 (+3V)
5	GND	Power	電源 (GND)

TXD1, RXD1 は CON10 にも接続されておりますが、同時利用には対応していませんので、どちらかひとつのコネクタでのみご利用ください。

5.9. CON8 (i. MX31 JTAG インターフェース)

CON8 は、JTAG デバッガを接続することができる JTAG インターフェースです。i. MX31 の JTAG コントローラに接続されています。

表 5-10 CON8 信号配列

ピン番号	信号名	I/0	機 能
1	VTref	Power	電源 (+3V)
2	GND	Power	電源(GND)
3	TRST*	In	i.MX31のTRSTBピンに接続
4	GND	Power	電源(GND)
5	TDI	In	i.MX31のTDIピンに接続
6	GND	Power	電源(GND)
7	TMS	In	i.MX31のTMSピンに接続
8	GND	Power	電源(GND)
9	TCK	In	i.MX31のTCKピンに接続
10	GND	Power	電源(GND)
11	TD0	Out	i.MX31のTD0ピンに接続
12	SRST*	In	システムリセット入力
13	RTCK	Out	i.MX31のRTCKピンに接続
14	GND	Power	電源(GND)

5.10. CON9 (LCD インターフェース)

CON9 は、デジタル RGB 入力を持つ液晶パネルモジュールを接続することができる LCD インターフェースです。i. MX31 の同期ディスプレイコントローラに接続されています。

● 最大解像度:800×600(18bit)

● コネクタ形状: 40 ピン (2.00mm ピッチ)

● コントローラ: i. MX31 内蔵同期ディスプレイコントローラ (SDC)

表 5-11 CON9 信号配列

ピン番号	信号名	I/0	機能
1	SCLK0	In	i. MX31 の SCLKO ピンに接続
2	CSPI2_SS1	Out	i.MX31のCSPI2_SS1ピンに接続
3	CSPI2_SS0	Out	i. MX31の CSPI2_SSO ピンに接続
4	CSPI3_SCLK	Out	i.MX31のCSPI3_SCLKピンに接続
5	CSPI3_MISO	In	i.MX31のCSPI3_MISOピンに接続
6	CSPI3_MOSI	Out	i.MX31のCSPI3_MOSIピンに接続
7	GND	Power	電源(GND)
8	+3V	Power	電源(+3V)
9	IPU_LD5	Out	i.MX31の IPU_LD5 ピンに接続
10	IPU_LD4	Out	i.MX31の IPU_LD4 ピンに接続
11	IPU_LD3	Out	i.MX31の IPU_LD3 ピンに接続
12	IPU_LD2	Out	i.MX31の IPU_LD2 ピンに接続
13	IPU_LD1	Out	i.MX31の IPU_LD1 ピンに接続
14	IPU_LD0	Out	i.MX31のIPU_LDOピンに接続
15	GND	Power	電源(GND)
16	IPU_LD11	Out	i.MX31のIPU_LD11ピンに接続
17	IPU_LD10	Out	i.MX31の IPU_LD10 ピンに接続
18	IPU_LD9	Out	i.MX31の IPU_LD9 ピンに接続
19	IPU_LD8	Out	i.MX31のIPU_LD8ピンに接続
20	IPU_LD7	Out	i.MX31のIPU_LD7ピンに接続
21	IPU_LD6	Out	i.MX31のIPU_LD6ピンに接続
22	GND	Power	電源 (GND)
23	IPU_LD17	Out	i.MX31のIPU_LD17ピンに接続
24	IPU_LD16	Out	i.MX31のIPU_LD16ピンに接続
25	IPU_LD15	Out	i.MX31のIPU_LD15ピンに接続
26	IPU_LD14	Out	i.MX31のIPU_LD14ピンに接続
27	IPU_LD13	Out	i.MX31のIPU_LD13ピンに接続
28	IPU_LD12	Out	i.MX31のIPU_LD12ピンに接続
29	GND	Power	電源(GND)
30	IPU_CONTRAST	Out	i.MX31のIPU_CONTRASTピンに接続
31	IPU_DRDY0	Out	i.MX31のIPU_DRDYピンに接続
32	IPU_VSYNC3	Out	i.MX31のIPU_VSYNC3ピンに接続
33	IPU_HSYNC	Out	i.MX31のIPU_HSYNCピンに接続
34	IPU_FPSHIFT	Out	i.MX31のIPU_FPSHIFTピンに接続
35	GND	Power	電源 (GND)
36	GND	Power	電源 (GND)
37	+3V	Power	電源(+3V)

ピン番号	信号名	I/0	機能
38	+3V	Power	電源 (+3V)
39	VBATT	Power	電源 (+3.4V~5.5V)
40	VBATT	Power	電源 (+3.4V~5.5V)

5.11. CON10 (拡張インターフェース)

CON10 は、の機能を拡張するためのインターフェースです。各インターフェースのI/0レベルは、+3Vです。 拡張機能を表 5-12に示します。

	2.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
機能名	内 容
UART1	調歩同期シリアルインターフェース1(ハードウェアフロー無し)
UART2	調歩同期シリアルインターフェース 2(2線フロー有り)
UART5	調歩同期シリアルインターフェース 3(6線フロー有り)
USBH1	USB インターフェース 3
1-wire	1線式 調歩同期シリアルインターフェース
I ² C1	I ² C シリアルインターフェース
SDHC2	SD/MMC インターフェース
GPI0	汎用入出力インターフェース
CSI	カメラインターフェース
KPP	キーパッドインターフェース
DAM	デジタルオーディオインターフェース
Audio	アナログオーディオインターフェース

表 5-12 CON10 拡張機能

5. 11. 1. UART1 (シリアルインターフェース 1)

- 信号入出力レベル:+3V I/0 レベル
- 最大データ転送レート: 1.875Mbps
- フロー制御:無し
- コントローラ: i. MX31 内蔵 UART コントローラ (ポート1)

信号線は CON7 にも接続されておりますが、同時利用には対応していませんので、 どちらかひとつのコネクタでのみご利用ください。

5. 11. 2. UART2 (シリアルインターフェース 2)

- 信号入出力レベル:+3V I/0 レベル
- 最大データ転送レート: 1.875Mbps
- フロー制御: CTS、RTS、DTR、DSR、DCD、RI
- コントローラ: i. MX31 内蔵 UART コントローラ (ポート2)

5. 11. 3. UART5 (シリアルインターフェース 3)

- 信号入出力レベル:+3V I/0 レベル
- 最大データ転送レート: 1.875Mbps

- フロー制御:CTS、RTS
- コントローラ: i. MX31 内蔵 UART コントローラ (ポート 5)

5.11.4. USBH1 (USB インターフェース 3)

USBH1 は USB シリアルインターフェースです。USB トランシーバを経由して i. MX31 の USB コントローラに接続されています。

- データ転送モード: USB 2.0 Full Speed (12Mbps)、Low Speed (1.5Mbps)
- コントローラ: i. MX31 内蔵 USB コントローラ (USBHOST1 ポート)

5.11.5. 1-wire (1 線式 調歩同期シリアルインターフェース)

1-wire は 1 線式 調歩同期シリアルインターフェースです。i. MX31 の 1-wire コントローラに接続されています。

● 信号入出力レベル:+3V I/0 レベル

5. 11. 6. $I^{2}C1$ ($I^{2}C$ シリアルインターフェース)

 I^2C1 は I^2C シリアルインターフェースです。i. MX31 の I^2C コントローラ(ポート 1)に接続されています。

● 信号入出力レベル:+3V I/0 レベル

5. 11. 7. SDHC2 (SD/MMC インターフェース)

SDHC2 は SD/MMC インターフェースです。i. MX31 の SD/MMC コントローラ(SDHC2)に接続されています。

● 信号入出力レベル:+3V I/0 レベル

5.11.8. GPIO (汎用入出力インターフェース)

GPIO は汎用入出力インターフェースです。i. MX31 の GPIO ピンに接続されています。また、これ以外にも他の機能に割り当てられたピンをマルチプレクス切り替えすることにより GPIO として利用することも可能です。マルチプレクスで GPIO 利用可能なピンは表をご覧ください。

- 信号入出力レベル:+3V I/0 レベル
- ビット数:5ビット

5. 11. 9. CSI (カメラインターフェース)

CSI はカメラインターフェースです。i. MX31 の CSI に接続されています。

- 信号入出力レベル:+3V I/0 レベル
- データビット数:8ビット

5. 11. 10. KPP (キーパッドインターフェース)

KPP はキーパッドインターフェースです。i. MX31 の KPP(キーパッドポート)に接続されています。

信号入出力レベル:+3V I/0 レベル 方式:キースキャンマトリクス方式

● 最大キーパッド数:30キー

5. 11. 11. DAM (デジタルオーディオインターフェース)

DAM はデジタルオーディオ用同期式シリアルインターフェースです。i. MX31 の DAM(デジタルオーディオマルチプレクサ) ポート4に接続されています。

● 信号入出力レベル:+3V I/0 レベル

● 信号線数:4線(STXD4, SRXD4, SFS4, SCK4)

5.11.12. Audio (アナログオーディオインターフェース)

Audio はアナログオーディオインターフェースです。オーディオコーデック IC(IC11)に接続されています。 コーデック IC(IC11)は、i. MX31 の DAM(デジタルオーディオマルチプレクサ) ポート 5 に接続されています。 コーデック IC の電源はスピーカー駆動用電源のみ+5V に、それ以外はすべて+3V 電源に接続されています。

最大サンプルレート: 48kHzスピーカー最大出力: 1W

表 5-13 CON10 信号配列および GPIO マルチプレクス情報

ピン	機能名	信号名	I/0	機能	GPI0
番号					モード
1	UART5	UART5_RTS	In	i.MX31のPC_VS2ピンに接続	_
2		UART5_CTS	Out	i.MX31のPC_RSTピンに接続	-
3		UART5_RXD	In	i.MX31のPC_BVD1ピンに接続	-
4		UART5_TXD	Out	i.MX31のPC_BVD2ピンに接続	_
5	UART1	UART1_RXD	In	i.MX31のRXD1ピンに接続	GPI02_4
6		UART1_TXD	Out	i.MX31のTXD1ピンに接続	GPI02_5
7	_	GND	Power	電源(GND)	_
8	_	+3V	Power	電源(+3V)	_
9	GPI0	GPI03_29	In/Out	i.MX31のATA_DIOWピンに接続	GPI03_29
10		GPI03_4	In/Out	i.MX31のCSI_D4ピンに接続	GPI03_4
11	SDHC2	SD2_DATA3	In/Out	i.MX31のPC_PWRONピンに接続	_
12		SD2_DATA2	In/Out	i.MX31のPC_VS1ピンに接続	_
13		SD2_DATA1	In/Out	i.MX31のPC_READYピンに接続	_
14		SD2_DATA0	In/Out	i.MX31のPC_WAIT*ピンに接続	_
15		SD2_CMD	In/Out	i.MX31のPC_CD1*ピンに接続	_
16		SD2_CLK	In/Out	i.MX31のPC_CD2*ピンに接続	_
17	-	GND	Power	電源(GND)	_
18	USBH1	USBH1_DP	In/Out	USB トランシーバの DP ピンに接続	_
19		USBH1_DM	In/Out	USB トランシーバの DM ピンに接続	_
20	-	GND	Power	電源(GND)	_
21	1wire	BATT_LINE	In/Out	i.MX31のBATT_LINEピンに接続	GPI02_17
22	GPI0	GPI02_2	In/Out	i. MX31 の SRX0 ピンに接続	GPI02_2
23		GPI02_1	In/Out	i. MX31 の STX0 ピンに接続	GPI02_1
24		GPI02_0	In/Out	i.MX31のSVENOピンに接続	GPI02_0
25	DAM	STXD4	Out	i.MX31のSTXD4ピンに接続	GPI01_19
26	Port4	SRXD4	In	i.MX31のSRXD4ピンに接続	GPI01_20

ピン番号	機能名	信号名	I/0	機能	GPIO モード
27		SFS4	Out	i.MX31 の SFS4 ピンに接続	
28		SCK4	Out	i. MX31 の SCK4 ピンに接続	_
29	UART2	UART2_DSR	In	i.MX31のDSR_DTE1ピンに接続	GPI02_13
30		UART2_RI	In	i. MX31 の RI_DTE1 ピンに接続	GPI02_14
31		UART2_DCD	In	i. MX31 の DCD_DTE1 ピンに接続	GPI02_15
32		UART2_DTR	Out	i.MX31のDTR_DTE1ピンに接続	GPI02_12
33		UART2_RTS	In	i. MX31 の RTS2 ピンに接続	_
34		UART2_CTS	Out	i. MX31 の CTS2 ピンに接続	_
35		UART2_RXD	In	i.MX31のRXD2ピンに接続	GPI01_27
36		UART2_TXD	Out	i.MX31のTXD2ピンに接続	GPI01_28
37	_	GND	Power	電源(GND)	_
38	_	+3V	Power	電源(+3V)	_
39	I2C1	I2C1_CLK	In/Out	i.MX31の I2C1_CLK ピンに接続	_
40		I2C1_DAT	In/Out	i.MX31の I2C1_DAT ピンに接続	_
41	GPIO	GPI0_3_0	In/Out	i.MX31のGPIO_3_0ピンに接続	GPI0_3_0
42		GPI0_3_1	In/Out	i. MX31 の GPIO_3_1 ピンに接続	GPI0_3_1
43	CSI	CSI_D8	In/Out	i.MX31のCSI_D8ピンに接続	GPI03_8
44		CSI_D9	In/Out	i.MX31のCSI_D9ピンに接続	GPI03_9
45		CSI_D10	In/Out	i.MX31のCSI_D10ピンに接続	GPI03_10
46		CSI_D11	In/Out	i.MX31のCSI_D11ピンに接続	GPI03_11
47		CSI_D12	In/Out	i.MX31のCSI_D12ピンに接続	GPI03_12
48		CSI_D13	In/Out	i.MX31のCSI_D13ピンに接続	GPI03_13
49		CSI_D14	In/Out	i.MX31のCSI_D14ピンに接続	GPI03_14
50		CSI_D15	In/Out	i.MX31のCSI_D15ピンに接続	GPI03_15
51		CSI_MCLK	Out	i.MX31のCSI_MCLKピンに接続	GPI03_16
52		CSI_VSYNC	Out	i.MX31のCSI_VSYNCピンに接続	GPI03_17
53		CSI_HSYNC	Out	i.MX31のCSI_HSYNCピンに接続	GPI03_18
54		CSI_PIXCLK	Out	i.MX31のCSI_PIXCLKピンに接続	GPI03_19
55	KPP	KEY_ROW7	In/Out	i.MX31のKEY_ROW7ピンに接続	GPI02_21
56		KEY_ROW6	In/Out	i.MX31のKEY_ROW6ピンに接続	GPI02_20
57		KEY_ROW5	In/Out	i.MX31のKEY_ROW5ピンに接続	GPI02_19
58		KEY_ROW4	In/Out	i.MX31のKEY_ROW4ピンに接続	GPI02_18
59		KEY_ROW3	In/Out	i.MX31のKEY_ROW3ピンに接続	_
60		KEY_COL7	In/Out	i.MX31のKEY_COL7ピンに接続	GPI02_25
61		KEY_COL6	In/Out	i.MX31のKEY_COL6ピンに接続	GPI02_24
62		KEY_COL5	In/Out	i.MX31のKEY_COL5ピンに接続	GPI02_23
63		KEY_COL4	In/Out	i.MX31のKEY_COL4ピンに接続	GPI02_22
64		KEY_COL3	In/Out	i.MX31のKEY_COL3ピンに接続	_
65		KEY_COL2	In/Out	i.MX31のKEY_COL2ピンに接続	_
66	_	MRST*	In	システムリセット入力	_
67	-	GND	Power	電源(GND)	_
68	Audio	SPK-	Out	オーディオコーデック スピーカー出力(-)	_
69		SPK+	Out	オーディオコーデック スピーカー出力(+)	_
70		HP_DET	In	オーディオコーデック ヘッドホンジャック 挿抜検出	_
71		HP_R	Out	オーディオコーデック ヘッドホン出力(右)	_
72		HP_L	Out	オーディオコーデック ヘッドホン出力(左)	_
73		HP_VGND	Out	オーディオコーデック ヘッドホン GND(VMID)	_
74		MIC_IN	In	オーディオコーデック マイク入力	_
75	_	GND	Power	電源(GND)	_
	l	3110	1 0 11 0 1]

ピン 番号	機能名	信号名	I/0	機能	GPIO モード
76	ı	GND	Power	電源(GND)	1
77	_	VBATT	Power	電源(+3.4V~5.5V)	-
78	_	VBATT	Power	電源(+3.4V~5.5V)	-
79		+5V	Power	電源(5V)	
80	_	+5V	Power	電源(5V)	_

5.12. CON11 (電源入力端子)

CON11 は Armadillo-500 FX に電源を供給する 4 ピンコネクタ (2mm ピッチ) です。VBATT には、過電圧保護のために 5.6V ツェナーダイオードと、過電流保護のために 2.3A リセッタブルヒューズが接続されています。+5V は USB のデバイス供給用電源とオーディオコーデックのスピーカ電源に使用し、VBATT はシステム電源 (+3V, +1.8V, +1.4V) に使用しています。入力電圧は単調増加としてください。極度に短い間隔でのオン/オフ繰り返しは行わないでください。入力には積層セラミックコンデンサ 4.7 μ F 3 個を実装しています。

ピン番号 信号名 I/0 機 能 +5V Power 電源(5V±5%) 2 GND Power 電源(GND) GND Power 電源(GND) VBATT 電源(+3,4V~5,25V) Power

表 5-14 CON11 信号配列

5.12.1. 内部電源電圧精度

Armadillo-500 FXは 3 つのスイッチングレギュレータで、VBATT電源からシステム用電圧+1.4V、+1.8V、+3.0Vを生成しています。各電圧の出力電圧精度と最大定格電流を表 5-2に示します。

電圧	精度	最大出力定格電流
+1.4V	±3% (25℃ typ.)	1A
+1.8V	±3% (25℃ typ.)	1A
+3. 0V	±3% (25°C typ.)	1A

表 5-15 電圧精度と最大定格電流

5. 13. J1, J2 (CPU モジュール/間コネクタ)

J1, J2 は Armadillo-500 の CPU モジュールとを接続する基板間コネクタです。ヒロセ電機社製 156 ピンコネクタ (基板間高さ:4mm) を採用しています。

J1, J2 の信号配列は、「8 CPUモジュールの信号配列」を参照してください。

表 5-16 J1, J2 のコネクタ型式

コネクタ名	コネクタ型式	
J1, J2	CPU モジュール	

FX10A-140S/14-SV	FX10A-140P/14-SV

5. 14. JP1 (USB インターフェース 2 設定ジャンパ)

JP1 は USB インターフェース 2 の USB トランシーバの ID ピンに接続されています。オープン状態で USB Device モード、ショート状態で USB Host モードになります。

5. 15. JP2, JP4 (ユーザー設定ジャンパ)

JP2, JP4 はユーザー側で自由に利用できるジャンパです。ジャンパに接続されている i. MX31 の信号を GPI0 の入力モードに設定します。 オープン状態で High レベル、ショート状態で Low レベルになります。

表 5-17 JP2, JP4 機能

ジャンパ名	機能
JP2	i. MX31 の COMPARE (GPI01_8) ピンに接続(Low:ショート、High:オープン)
JP4	i. MX31 の CAPTURE (GPI01_7) ピンに接続 (Low:ショート、High:オープン)

5.16. JP3 (i.MX31 起動モード設定ジャンパ)

JP3 は i. MX31 の起動モードを設定するジャンパです。

表 5-18 Armadillo-500 FX の起動モード

JP3	動作
オープン	CPU モジュール上のフラッシュメモリブート
ショート	UART ブート: UART1 (CON7 または CON10)使用

5. 17. D5 (パワーLED)

D5 は Armadillo-500 FX の電源状態を示す緑色 LED です。電源投入状態で点灯します。

5.18. D6 (ユーザーLED)

D6 はユーザー側で自由に利用できる赤色 LED です。LED に接続されている i. MX31 の信号を GPIO の出力モードに設定します。 High レベルで点灯、Low レベルで消灯にできます。

表 5-19 D6 機能

LED名	機能
D4	赤色 LED、i. MX31 の SIMPDO(GPIO2_3)ピンに接続(Low:消灯、High:点灯)

6.基板形状図

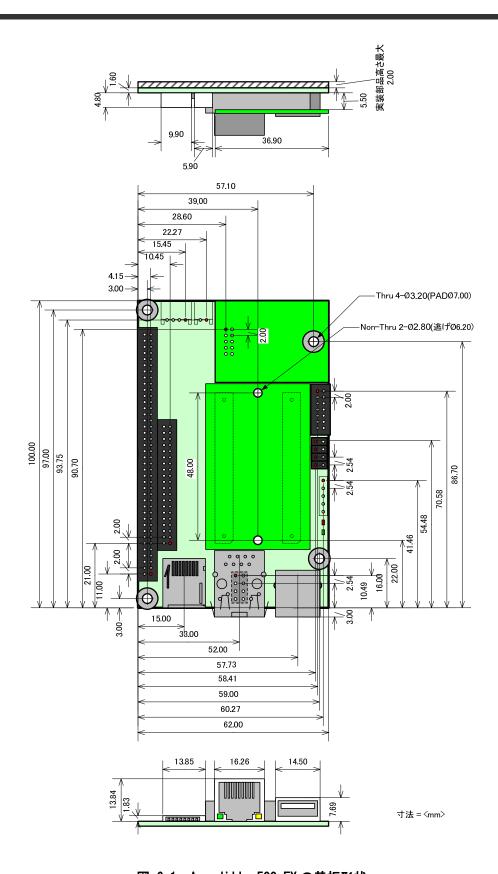


図 6-1 Armadillo-500 FX の基板形状

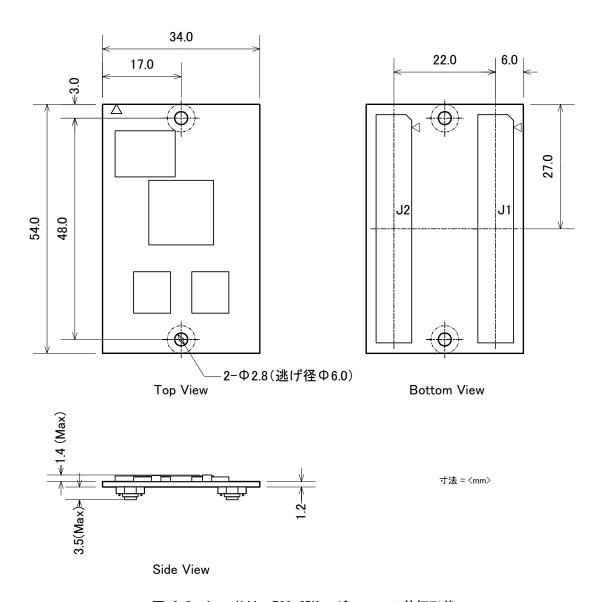


図 6-2 Armadillo-500 CPU モジュールの基板形状

7.Appendix A 基板リビジョンの確認方法

Armadillo-500 FXの基板リビジョンは、図 7-1で示された位置にシルク印刷されています。

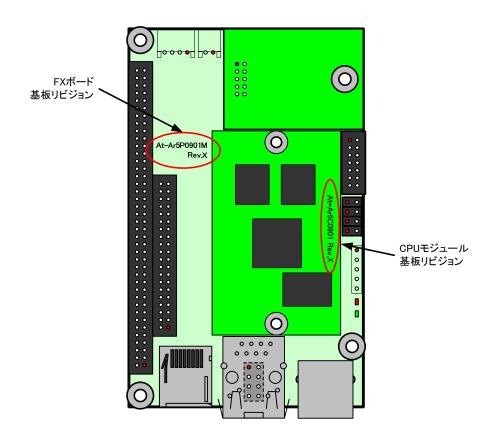


図 7-1 基板リビジョン位置

8. Appendix B CPU モジュールの信号配列

Armadillo-500 CPUモジュールのJ1, J2 の信号配列を表 8-1、表 8-2に示します。

表 8-1 J1 信号配列

ピン番号	信号名	電圧グループ	ピン番号	信号名	電圧グループ
1	NVCC5_IN	NVCC5	2	QVCC_IN	QVCC
3	NVCC5_IN	NVCC5	4	QVCC_IN	QVCC
5	BATT_LINE	NVCC5	6	QVCC_IN	QVCC
7	CSPI2_SPI_RDY	NVCC5	8	LD15	+1.8V
9	CSPI2_SCLK	NVCC5	10	LD14	+1.8V
11	GND	GND	12	GND	GND
13	CSPI2_SS2	NVCC5	14	LD13	+1.8V
15	CSPI2_SS1	NVCC5	16	LD12	+1.8V
17	CSPI2_SS0	NVCC5	18	LD11	+1.8V
19	CSPI2_MISO	NVCC5	20	LD10	+1.8V
21	CSPI2_MOSI	NVCC5	22	LD9	+1.8V
23	SFS5	NVCC5	24	LD8	+1.8V
25	SCK5	NVCC5	26	LD7	+1.8V
27	SRXD5	NVCC5	28	LD6	+1.8V
29	STXD5	NVCC5	30	LD5	+1.8V
31	SFS4	NVCC5	32	LD4	+1.8V
33	GND	GND	34	GND	GND
35	SCK4	NVCC5	36	LD3	+1.8V
37	SRXD4	NVCC5	38	LD2	+1.8V
39	STXD4	NVCC5	40	LD1	+1.8V
41	USBOTG_D7	NVCC5	42	LD0	+1.8V
43	USBOTG_D6	NVCC5	44	PC_CE2*	+1.8V
45	USBOTG_D5	NVCC5	46	PC_CE1*	+1.8V
47	USBOTG_D4	NVCC5	48	EB1*	+1.8V
49	USBOTG_D3	NVCC5	50	EBO*	+1.8V
51	USBOTG_D2	NVCC5	52	LBA*	+1.8V
53	USBOTG_D1	NVCC5	54	BCLK	+1.8V
55	GND	GND	56	GND	GND
57	USBOTG_D0	NVCC5	58	ECB*	+1.8V
59	USBOTG_NXT	NVCC5	60	0E*	+1.8V
61	USBOTG_STP	NVCC5	62	RW*	+1.8V
63	USBOTG_DIR	NVCC5	64	CS5*	+1.8V
65	USBOTG_CLK	NVCC5	66	CS4*	+1.8V
67	SFS6	+1.8V	68	CS3*	+1.8V
69	SCK6	+1.8V	70	CS1*	+1.8V
71	SRXD6	+1.8V	72	LA25	+1.8V
73	STXD6	+1.8V	74	LA24	+1.8V
75	SFS3	+1.8V	76	LA23	+1.8V
77	GND	GND	78	GND	GND
79	SCK3	+1.8V	80	LA22	+1.8V
81	SRXD3	+1.8V	82	LA21	+1.8V

ピン番号	信号名	電圧グループ	ピン番号	信号名	電圧グループ
83	STXD3	+1.8V	84	LA20	+1.8V
85	USBH2_D1	+1.8V	86	LA19	+1.8V
87	USBH2_D0	+1.8V	88	LA18	+1.8V
89	USBH2_NXT	+1.8V	90	LA17	+1.8V
91	USBH2_STP	+1.8V	92	LA16	+1.8V
93	USBH2_DIR	+1.8V	94	LA15	+1.8V
95	USBH2_CLK	+1.8V	96	LA14	+1.8V
97	CSPI1_SPI_RDY	+1.8V	98	LA13	+1.8V
99	GND	GND	100	GND	GND
101	CSPI1_SCLK	+1.8V	102	LA12	+1.8V
103	CSPI1_SS2	+1.8V	104	LA11	+1.8V
105	CSPI1_SS1	+1.8V	106	LA10	+1.8V
107	CSPI1_SS0	+1.8V	108	LA9	+1.8V
109	CSPI1_MISO	+1.8V	110	LA8	+1.8V
111	CSPI1_MOSI	+1.8V	112	LA7	+1.8V
113	NFRB	+1.8V	114	LA6	+1.8V
115	NFCE*	+1.8V	116	LA5	+1.8V
117	NFWP*	+1.8V	118	LA4	+1.8V
119	NFCLE	+1.8V	120	LA3	+1.8V
121	GND	GND	122	GND	GND
123	NFALE	+1.8V	124	LA2	+1.8V
125	NFRE*	+1.8V	126	LA1	+1.8V
127	NFWE*	+1.8V	128	LA0	+1.8V
129	GPI01_3	+1.8V	130	BOOT_MODE4	+1.8V
131	GPI01_2	+1.8V	132	BOOT_MODE3	+1.8V
133	GPI01_1	+1.8V	134	BOOT_MODE2	+1.8V
135	GPI01_0	+1.8V	136	BOOT_MODE1	+1.8V
137	CMP1	+1.8V	138	BOOT_MODEO	+1.8V
139	CAP1	+1.8V	140	CLKSS	+1.8V
141	WATCHDOG_RST	+1.8V	142	CLKO	+1.8V
143	GND	GND	144	GND	GND
145	B_POR*	+1.8V[1]	146	FUSE_VDD_IN	FUSE_VDD
147	RESET_IN*	+1.8V	148	+1.8V_IN	+1.8V
149	N. C	_	150	+1.8V_IN	+1.8V
151	+1.8V_IN	+1.8V	152	+1.8V_IN	+1.8V
153	+1.8V_IN	+1.8V	154	+1.8V_IN	+1.8V

_

 $^{^{[1]}}$ B_POR*ピンはトレラント機能により+5V までの入力可能

表 8-2 J2 信号配列

ピン番号	信号名	電圧グループ	ピン番号	信号名	電圧グループ
1	SD1_CMD	NVCC3	2	NVCC3_IN	NVCC3
3	SD1_CLK	NVCC3	4	NVCC3_IN	NVCC3
5	SD1_D0	NVCC3	6	CSPI3_MOSI	NVCC3
7	SD1_D1	NVCC3	8	CSPI3_MISO	NVCC3
9	SD1_D2	NVCC3	10	CSPI3_SCLK	NVCC3
11	GND	GND	12	GND	GND
13	SD1_D3	NVCC3	14	CSPI3_SPI_RDY	NVCC3
15	ATA_CS1	NVCC3	16	PC_CD2*	NVCC3
17	ATA_DMACK	NVCC3	18	PC_VS1	NVCC3
19	ATA_CS0	NVCC3	20	PC_RST	NVCC3
21	ATA_DIOR	NVCC3	22	PC_READY	NVCC3
23	ATA_DIOW	NVCC3	24	PC_RW*	NVCC3
25	ATA_RESET*	NVCC3	26	PC_BVD1	NVCC3
27	VSTBY	+1.8V	28	IOIS16	NVCC3
29	DVFS0	+1.8V	30	PC_PWRON	NVCC3
31	DVFS1	+1. 8V	32	PC_BVD2	NVCC3
33	GND	GND	34	GND	GND
35	VPG0	+1. 8V	36	PC_POE	NVCC3
37	VPG1	+1. 8V	38	PC_VS2	NVCC3
39	POWER_FAIL	+1. 8V	40	PC_CD1*	NVCC3
41	SVEN0	NVCC6	42	PC_WAIT*	NVCC3
43	SRX0	NVCC6	44	PWMO	NVCC3
45	SCLK0	NVCC6	46	NVCC6_IN	NVCC6
47	SRST0	NVCC6	48	NVCC6_IN	NVCC6
49	STX0	NVCC6	50	RTCK	NVCC6
51	SIMPDO	NVCC6	52	TCK	NVCC6
53	KEY_ROW7	NVCC6	54	TMS	NVCC6
55	GND	GND	56	GND	GND
57	KEY_ROW6	NVCC6	58	TDI	NVCC6
59	KEY_ROW5	NVCC6	60	TDO	NVCC6
	KEY_ROW4		62		
61	KE1_ROW4 KEY_ROW3	NVCC6	64	TRST*	NVCC6
65	KE1_ROW3 KEY_ROW2	NVCC6	66	RXD1	NVCC8
67		NVCC6	68		NVCC8
	KEY_ROW1 KEY_ROW0			TXD1	
69		NVCC6	70	RTS1	NVCC8
71	KEY_COLO	NVCC6	72	CTS1	NVCC8
73	KEY_COL1	NVCC6	74 76	NVCC8_IN	NVCC8
75	KEY_COL2	NVCC6	76	NVCC8_IN	NVCC8
77	GND	GND	78	GND	GND
79	KEY_COL3	NVCC6	80	DTR_DTE1	NVCC8
81	KEY_COL4	NVCC6	82	DSR_DTE1	NVCC8
83	KEY_COL5	NVCC6	84	RI_DTE1	NVCC8
85	KEY_COL6	NVCC6	86	DCD_DTE1	NVCC8
87	KEY_COL7	NVCC6	88	RXD2	NVCC8
89	CSI_D4	NVCC4	90	TXD2	NVCC8

ピン番号	信号名	電圧グループ	ピン番号	信号名	電圧グループ
91	CSI_D5	NVCC4	92	RTS2	NVCC8
93	CSI_D6	NVCC4	94	CTS2	NVCC8
95	CSI_D7	NVCC4	96	NVCC4_IN	NVCC4
97	CSI_D8	NVCC4	98	NVCC4_IN	NVCC4
99	GND	GND	100	GND	GND
101	CSI_D9	NVCC4	102	I2C_CLK	NVCC4
103	CSI_D10	NVCC4	104	I2C_DAT	NVCC4
105	CSI_D11	NVCC4	106	GPI03_0	NVCC4
107	CSI_D12	NVCC4	108	GPI03_1	NVCC4
109	CSI_D13	NVCC4	110	IPU_LD0	NVCC7
111	CSI_D14	NVCC4	112	IPU_LD1	NVCC7
113	CSI_D15	NVCC4	114	IPU_LD2	NVCC7
115	CSI_MCLK	NVCC4	116	IPU_LD3	NVCC7
117	CSI_VSYNC	NVCC4	118	IPU_LD4	NVCC7
119	CSI_HSYNC	NVCC4	120	IPU_LD5	NVCC7
121	GND	GND	122	GND	GND
123	CSI_PIXCLK	NVCC4	124	IPU_LD6	NVCC7
125	IPU_VSYNC0	NVCC7	126	IPU_LD7	NVCC7
127	IPU_HSYNC	NVCC7	128	IPU_LD8	NVCC7
129	IPU_FPSHIFT	NVCC7	130	IPU_LD9	NVCC7
131	IPU_DRDY0	NVCC7	132	IPU_LD10	NVCC7
133	IPU_LCS0	NVCC7	134	IPU_LD11	NVCC7
135	IPU_LCS1	NVCC7	136	IPU_LD12	NVCC7
137	IPU_PAR_RS	NVCC7	138	IPU_LD13	NVCC7
139	IPU_WRITE	NVCC7	140	IPU_LD14	NVCC7
141	IPU_READ	NVCC7	142	IPU_LD15	NVCC7
143	GND	GND	144	GND	GND
145	IPU_VSYNC3	NVCC7	146	IPU_LD16	NVCC7
147	IPU_CONTRAST	NVCC7	148	IPU_LD17	NVCC7
149	IPU_D3_REV	NVCC7	150	N. C	_
151	IPU_D3_CLS	NVCC7	152	NVCC7_IN	NVCC7
153	IPU_D3_SPL	NVCC7	154	NVCC7_IN	NVCC7

改訂履歴

Version	年月日	改訂内容
1. 0. 0	2008. 10. 20	・初版発行

■ 困ったときは...

Armadillo 開発者サイトでは、本書に記載されていない情報や最新の技術情報や FAQ などが 随時更新されています。困っときは、まず Armadillo 開発者サイトにアクセスしてみましょう!

Armadillo開発者サイト

http://armadillo.atmark-techno.com

■ 開発に関する質問は...

こんなことがしたいけど、実績が知りたい。などの技術的な質問がある方は、Armadilloメーリングリストを利用したらどうでしょうか?Armadilloメーリングリストには、多くの方々が購読されています。もしかしたら会員メンバーの中に、解決までの道標を提供してくれるかもしれません。

Armadilloメーリングリスト

http://armadillo.atmark-techno.com/mailinglists

Armadillo-500 厚汉

ハードウェアマニュアル