Armadillo-9 ハードウェアマニュアル

Version 1.1.6 2011/10/21

株式会社アットマークテクノ [http://www.atmark-techno.com]

Armadillo サイト [http://armadillo.atmark-techno.com]

Armadillo-9 ハードウェアマニュアル

株式会社アットマークテクノ

060-0035 札幌市中央区北 5 条東 2 丁目 AFT ビル TEL 011-207-6550 FAX 011-207-6570

製作著作 © 2004-2011 Atmark Techno, Inc.

Version 1.1.6 2011/10/21

目次

1.	はじめに	7
	1.1. 本書および関連ファイルのバージョンについて	7
	1.2. 本書の構成	
2	注意事項	
	2.1. 安全に関する注意事項	
	2.2. 取扱い上の注意事項	
	2.3. ソフトウェア使用に関しての注意事項	
	2.4. 保証について	
	2.5. 輸出について	
	2.6. 商標について	
3.	概要	
	3.1. ボード概要	11
	3.2. ブロック図	11
4.	メモリマップ	
	・	
	4.2. Linux 使用時の論理メモリマップ	
5	各種インターフェース仕様	
J.	4年1ファーフェースは19k	
	5.2. CON1(シリアルインターフェース 1)	
	5.3. CON2(シリアルインターフェース 2)	
	5.4. CON3(USB インターフェース)	17
	5.5. CON4(パラレルインターフェース)	
	5.6. CON5(パラレルインターフェース)	18
	5.7. CON6(EP9315 JTAG)	
	5.8. CON7	
	5.9. CON8(同期シリアル/AC97/I2S)	
	5.10. CON9(IDE インターフェース)	
	5.11. CON10(コンパクトフラッシュ)	
	5.12. CON11(LAN コネクタ)	
	5.13. CON12(VGA コネクタ)	
	5.14. CON13(電源入力コネクタ)	
	5.15. CCON14(拡張電源入力)	
	5.16. J1, J2(PC/104 準拠拡張バス)	
	5.16.1. PC/104 拡張バスアクセス時の注意事項	27
	5.16.2. アクセスタイミング	28
	5.17. LED (D4)	29
	5.18. LED (D5, D6)	
	5.19. LED (D14)	
	5.20. JP1, JP2	
	5.20.1. JP1(ブート ROM の選択)	
	5.20.2. JP2(ブート Linux の選択)	31
	5.21. コネクタ/スイッチ型式	32
	5.22. LED 型式(参考)	
6.	その他の各種機能	34
	6.1. CPLD 内部レジスタ(I/O Control Register)	34
	6.1.1. I/O Control レジスタのメモリマップ	
	6.1.2. 各種 I/O Control レジスタの詳細	
	6.1.3. PC/104 の割り込みコントローラの仕組み	
	6.2. 外部割込みについて	
	6.3. LED(D1, D2)	
	0.9. LLD(D1, D2)	31

	6.3.1. 基板リビジョン E 以前の LED(D2)仕様	37
	6.3.2. 基板リビジョン E 以後の LED(D2)仕様	
	6.4. カレンダ時計(Real Time Clock)	
	6.5. 電源回路の構成	39
7.	基板形状図	40
	7.1. ANO10 基板形状図	41
	7.2 ANO11 基板形状図	42

図目次

3.1. Armadillo-9 ブロック図	. 12
5.1. 各種インターフェースの配置	. 15
5.2. PC/104 バスのメモリ空間	. 27
5.3. PC/104 バスへのアクセス方法	. 28
5.4. PC/104 バスアクセスタイミング	. 29
5.5. LED(D4)の接続	. 30
5.6. LED(D5,6)の接続 5.7. LED(D14)の接続	. 30
5.7. LED(D14)の接続	. 31
5.8. ジャンパコネクタ	. 32
6.1. PC/104 の割り込みコントローラの仕組み	. 36
6.2. EXTIRQ の接続	. 37
6.3. LED(D1,D2)の接続(基板リビジョン E 以前)	. 38
6.4. LED(D1,D2)の接続(基板リビジョン E 以後)	. 38
6.5. 外付けバッテリーの接続	. 39
6.6. Armadillo-9 の電源回路構成	. 39
7.1. ANO10 の基板形状	. 41
7.2. ANO11 の基板形状	. 42

表目次

3.1. Armadillo-9 ボード仕様	11
4.1. Armadillo-9 物理メモリマップ	13
4.2. Armadillo-9 Linux 使用時の論理メモリマップ	14
5.1. 各種インターフェースの内容	15
5.2. CON1 信号配列	16
5.3. CON2 信号配列	17
5.4. CON3 信号配列	17
5.5. CON4 信号配列	18
5.6. パラレルインターフェースの電気的仕様	18
5.7. CON5 信号配列	
5.8. CON8 信号配列	
5.9. 各モードにおけるピンの機能	20
5.10. CON9 信号配列	
5.11. CON10 信号配列	21
5.12. CON11 信号配列	22
5.13. CON12 信号配列	23
5.14. 解像度と水平周波数	23
5.15. CON13 信号配列	23
5.16. CON14 信号配列	24
5.17. J1 信号配列(1)	24
5.18. J1 信号配列(2)	25
5.19. J2 信号配列(1)	26
5.20. J2 信号配列(2)	26
5.21. LED(D5,D6) の状態	30
5.22. LED(D14) の状態	30
5.23. ジャンパの設定と動作	
5.24. コネクタ/スイッチ型式の一覧	32
5.25. LED 型式の例	33
6.1. I/O Control レジスタのメモリマップ	
6.2. 各種 I/O Control レジスタの詳細	
6.3. 各種 I/O Control レジスタの各ビットの意味	

1. はじめに

1.1. 本書および関連ファイルのバージョンについて

本書を含めた関連マニュアル、ソースファイルやイメージファイルなどの関連ファイルは最新版を使用することをおすすめいたします。本書を読み進める前に、Armadillo サイト(http://armadillo.atmarktechno.com)から最新版の情報をご確認ください。

1.2. 本書の構成

本マニュアルは、Armadillo シリーズを使用する上で必要な情報のうち、以下の点について記載されています。

- ハードウェア概要
- ・メモリマップ
- インターフェース仕様
- ・ 基板の形状
- ・ケースの形状(Armadillo-2x0のみ)
- ・LCD パネル仕様(Armadillo-500 FX インターフェースボードのみ)

Armadillo シリーズの機能を最大限に引き出すために、ご活用いただければ幸いです。

2. 注意事項

2.1. 安全に関する注意事項

本製品を安全にご使用いただくために、特に以下の点にご注意ください。

- · ご使用の前に必ず製品マニュアルおよび関連資料をお読みになり、使用上の注意を守って正しく安全にお使いください。
- ・マニュアルに記載されていない操作・拡張などを行う場合は、弊社 Web サイトに掲載されている資料やその他技術情報を十分に理解した上で、お客様自身の責任で安全にお使いください。
- ・水・湿気・ほこり・油煙等の多い場所に設置しないでください。火 災、故障、感電などの原因になる場合があります。
- ・本製品に搭載されている部品の一部は、発熱により高温になる場合があります。周囲温度や取扱いによってはやけどの原因となる恐れがあります。本体の電源が入っている間、または電源切断後本体の温度が下がるまでの間は、基板上の電子部品、及びその周辺部分には触れないでください。
- ・本製品を使用して、お客様の仕様による機器・システムを開発される場合は、製品マニュアルおよび関連資料、弊社 Web サイトで提供している技術情報のほか、関連するデバイスのデータシート等を熟読し、十分に理解した上で設計・開発を行ってください。また、信頼性および安全性を確保・維持するため、事前に十分な試験を実施してください。
- ・本製品は、機能・精度において極めて高い信頼性・安全性が必要とされる用途(医療機器、交通関連機器、燃焼制御、安全装置等)での使用を意図しておりません。これらの設備や機器またはシステム等に使用された場合において、人身事故、火災、損害等が発生した場合、当社はいかなる責任も負いかねます。
- ・本製品には、一般電子機器用(OA機器・通信機器・計測機器・工作機械等)に製造された半導体部品を使用しています。外来ノイズやサージ等により誤作動や故障が発生する可能性があります。万一誤作動または故障などが発生した場合に備え、生命・身体・財産等が侵害されることのないよう、装置としての安全設計(リミットスイッチやヒューズ・ブレーカー等の保護回路の設置、装置の多重化等)に万全を期し、信頼性および安全性維持のための十分な措置を講じた上でお使いください。
- ・無線 LAN 機能を搭載した製品は、心臓ペースメーカーや補聴器などの医療機器、火災報知器や自動ドアなどの自動制御器、電子レンジ、高度な電子機器やテレビ・ラジオに近接する場所、移動体識別用の構

内無線局および特定小電力無線局の近くで使用しないでください。製品が発生する電波によりこれらの機器の誤作動を招く恐れがあります。

2.2. 取扱い上の注意事項

本製品に恒久的なダメージをあたえないよう、取扱い時には以下のような点にご注意ください。

本製品 本製品について**改造**を行った場合は**保証対象外**となりますので十分ご注意ください。また、 の改造 改造やコネクタ等の増設^[1]を行う場合は、作業前に必ず動作確認を行うようお願いします。

電源の 本製品や周辺回路に電源が入っている状態での汎用入出力コネクタの着脱は、絶対に行わ投入 ないでください。

静電気 本製品には CMOS デバイスを使用していますので、ご使用になる時までは、帯電防止対策 のされている、出荷時のパッケージ等にて保管してください。

ラッチ 電源および入出力からの過大なノイズやサージ、電源電圧の急激な変動等により、使用しアップ ている CMOS デバイスがラッチアップを起こす可能性があります。いったんラッチアップ 状態となると、電源を切断しないかぎりこの状態が維持されるため、デバイスの破損につ ながることがあります。ノイズの影響を受けやすい入出力ラインには、保護回路を入れることや、ノイズ源となる装置と共通の電源を使用しない等の対策をとることをお勧めします。

衝撃 落下や衝撃などの強い振動を与えないでください。

2.3. ソフトウェア使用に関しての注意事項

本製品に含まれるソフト ウェアについて 本製品に含まれるソフトウェア(付属のドキュメント等も含みます)は、現状有姿(AS IS)にて提供いたします。お客様ご自身の責任において、使用用途・目的の適合について、事前に十分な検討と試験を実施した上でお使いください。当社は、当該ソフトウェアが特定の目的に適合すること、ソフトウェアの信頼性および正確性、ソフトウェアを含む本製品の使用による結果について、お客様に対しなんら保証も行うものではありません。

2.4. 保証について

本製品の本体基板は、製品に添付もしくは弊社 Web サイトに記載している「製品保証規定」に従い、ご購入から 1 年間の交換保証を行っています。添付品およびソフトウエアは保証対象外となりますのでご注意ください。

製品保証規定 http://www.atmark-techno.com/support/warranty-policy

2.5. 輸出について

本製品の開発・製造は、原則として日本国内での使用を想定して実施しています。本製品を輸出する際は、輸出者の責任において、輸出関連法令等を遵守し、必要な手続きを行ってください。海外の法令および規則への適合については当社はなんらの保証を行うものではありません。本製品および関連技術は、大量破壊兵器の開発目的、軍事利用その他軍事用途の目的、その他国内外の法令および規則により製造・使用・販売・調達が禁止されている機器には使用することができません。

^[1]コネクタを増設する際にはマスキングを行い、周囲の部品に半田くず、半田ボール等付着しないよう十分にご注意ください。

2.6. 商標について

・Armadillo は株式会社アットマークテクノの登録商標です。その他の記載の商品名および会社名は、 各社・各団体の商標または登録商標です。™、®マークは省略しています。

・SD、SDHC、microSD、microSDHC、SDIO ロゴは SD-3C、LLC の商標です。

3. 概要

3.1. ボード概要

Armadillo-9 の主な仕様を表 3-1 に示します。

表 3.1 Armadillo-9 ボード仕様

プロセッサ	CirrusLogic EP9315-CB		
	ARM920T コア採用		
	· ARM9TDMI CPU		
	16kB 命令キャッシュ		
	・16kB データキャッシュ		
	・Thumb code(16bit 命令セット)サポート		
システムクロック	CPU Core クロック: 200MHz		
	BUS クロック: 100MHz		
メモリ	SDRAM: 64MB(32bit 幅)		
	FLASH: 8MB(16bit 幅)		
LAN インターフェース	10BASE-T/100BASE-TX		
シリアルインターフェース	2 チャンネル(調歩同期, Max: 230.4kbps)		
	RS232C レベル入出力		
	フロー制御		
	・シリアルインターフェース 1:フロー制御ピン有り(CTS,RTS,DTR,DSR,DCD,RI)		
	・シリアルインターフェース 2:フロー制御ピン無し		
汎用パラレル入出力	8ビット+4ビット		
タイマ	・16 ビット汎用タイマ:2 チャンネル		
	(1 チャンネルは Linux のシステムタイマに使用)		
	・32 ビット汎用タイマ:1 チャンネル		
	・ 40 ビットデバッグ向けタイマ:1 チャンネル		
VGA	コネクタ形状: ミニ D-Sub15 ピン		
	最大解像度 1024×768		
	· 1024×768(8bit Color)		
	800×600(8/16bit Color)		
	· 640×480(8/16bit Color)		
USB (Host)	2.0 Full Speed (12Mbps) 1 チャンネル, Type-A コネクタ		
ストレージ	IDE I/F(2.0mm ピッチ 44 ピン)		
	PIO モード、ATA33 モード対応		
カレンダ時計	SII 社製:S-3531A (または S-35380A、S-35390A)		
	ポリアセンキャパシタによりバックアップ		
	(ボード外部の電池併用可能)		
コンパクトフラッシュ	Type I/II に対応 (I/O, メモリカード対応)		
拡張バス	PC/104 準拠ピン配列(16bit)		
基板サイズ	90.2 × 95.9 (突起部含まず)		
電源電圧	5V±5%		
消費電流/電力	400mA(Typ.)/2W(Typ.)		
使用温度範囲	0°C~+60°C		
耐振動性	JIS C 0040(IEC-68-2-6)により測定		
	水平、垂直ともに、2G 10Hz~500Hz まで対応		

3.2. ブロック図

Armadillo-9 のブロック図を図 3-1 に示します。

Armadillo-9 ハードウェアマニュアル 概要

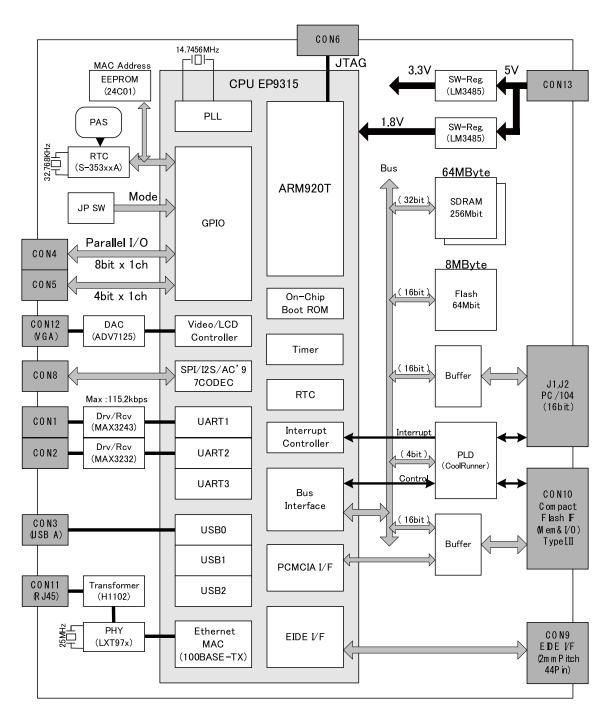


図 3.1 Armadillo-9 ブロック図

4. メモリマップ

4.1. 物理メモリマップ

Armadillo-9 の物理メモリマップは次の通りです。

表 4.1 Armadillo-9 物理メモリマップ

Start Address	End Address	デバイス	メモリエリア	設定
0x0000 0000	0x0FFF FFFF	Reserved	CS0	
0x1000 0000	0x1000 000F	I/O Control Register	CS1	8bit 幅
0x1000 0010	0x11FF FFFF	Reserved		
0x1200 0000	0x1200 FFFF	PC/104 I/O 空間		
		(8bit)		
0x1201 0000	0x12FF FFFF	Reserved		
0x1300 0000	0x13FF FFFF	PC/104 Memory 空間		
		(8bit)		
0x1400 0000	0x1FFF FFFF	Reserved		
0x2000 0000	0x21FF FFFF	Reserved	CS2	16bit 幅
0x2200 0000	0x2200 FFFF	PC/104 I/O 空間		
		(16bit)		
0x2201 0000	0x22FF FFFF	Reserved		
0x2300 0000	0x23FF FFFF	PC/104 Memory 空間		
		(16bit)		
0x2400 0000	0x2FFF FFFF	Reserved		
0x3000 0000	0x3FFF FFFF	Reserved	CS3	
0x4000 0000	0x47FF FFFF	Compact Flash	PCMCIA	16bit 幅
		(I/O 空間)		
0x4800 0000	0x4BFF FFFF	Compact Flash		
		(Attribute 空間)		
0x4C00 0000	0x4FFF FFFF	Compact Flash		
0.5000.0000	0 5555 5555	(Memory 空間)		
0x5000 0000	0x5FFF FFFF	Reserved		
0x6000 0000	0x607F FFFF	Flash Memory	CS6	16bit 幅
0.0000.0000	0 0555 5555	(8MB)		
0x6080 0000	0x6FFF FFFF	Reserved	007	
0x7000 0000	0x7FFF FFFF	Reserved	CS7	
0x8000 0000	0x8008 FFFF	EP9315 Internal Register	CPU System	
0.0000.0000	0.0000.0555	(AHB)	Register	
0x8009 0000	0x8009 3FFF	Internal Boot ROM (16kB)	rtegistei	
0x8009 4000	0x8009 FFFF	Reserved		
0x8009 4000 0x800A 0000	0x8009 FFFF 0x800F FFFF	EP9315 Internal Register		
UXOUUA UUUU	UXOUUF FFFF	(AHB)		
0x8010 0000	0x807F FFFF	Reserved		
0x8080 0000	0x8094 FFFF	EP9315 Internal Register		
		(APB)		
0x8095 0000	0x8FFF FFFF	Reserved		
0x9000 0000	0xBFFF FFFF	Reserved		

Start Address	End Address	デバイス	メモリエリア	設定
0xC000 0000	0xC1FF FFFF	SDRAM	SDCE0	32bit 幅
		(32MB)	(SDRAM)	
0xC200 0000	0xC3FF FFFF	Reserved		
0xC400 0000	0xC5FF FFFF	SDRAM		
		(32MB)		
0xC600 0000	0xCFFF FFFF	Reserved		
0xD000 0000	0xFFFF FFFF	Reserved		

4.2. Linux 使用時の論理メモリマップ

Linux を使用する場合、Armadillo-9 は MMU により次の論理メモリマップに設定されます。

表 4.2 Armadillo-9 Linux 使用時の論理メモリマップ

Start Address	End Address	デバイス	メモリエリア	設定
動的に確保	+0x007F FFFF	Flash Memory (8MB)	CS6	16bit 幅
0xC000 0000	0xC3FF FFFF	SDRAM (64MB)	SDCE0 (SDRAM)	32bit 幅
0xC400 0000	0xCFFF FFFF	Reserved		
0xD000 0000	0xD7FF FFFF	Compact Flash (I/O 空間)	PCMCIA	16bit 幅
0xD800 0000	0xDBFF FFFF	Compact Flash (Attribute 空間)		
0xDC00 0000	0xDFFF FFFF	Compact Flash (Memory 空間)		
0xF000 0000	0xF000 000F	I/O Control Register	CS1	8bit 幅
0xF000 0010	0xF1FF FFFF	Reserved		
0xF200 0000	0xF200 FFFF	PC/104 I/O 空間 (8bit)		
0xF201 0000	0xF2FF FFFF	Reserved		
0xF300 0000	0xF3FF FFFF	PC/104 Memory 空間 (8bit)		
0xF400 0000	0xF5FF FFFF	Reserved		
0xF600 0000	0xF600 FFFF	PC/104 I/O 空間 (16bit)	CS2	16bit 幅
0xF601 0000	0xF6FF FFFF	Reserved		
0xF700 0000	0xF7FF FFFF	PC/104 Memory 空間 (16bit)		
0xF800 0000	0xFEFF FFFF	Reserved		
0xFF00 0000	0xFF08 FFFF	EP9315 Internal Register (AHB)	CPU System	
0xFF09 0000	0xFF09 3FFF	Internal Boot ROM (16kB)	Register	
0xFF09 4000	0xFF09 FFFF	Reserved		
0xFF0A 0000	0xFF0F FFFF	EP9315 Internal Register (AHB)		
0xFF10 0000	0xFF7F FFFF	Reserved		
0xFF80 0000	0xFF94 FFFF	EP9315 Internal Register (APB)		
0xFF95 0000	0xFFFF FFFF	Reserved		

5. 各種インターフェース仕様

5.1. 各種インターフェースの配置

Armadillo-9 のインターフェースの配置は次の通りです。

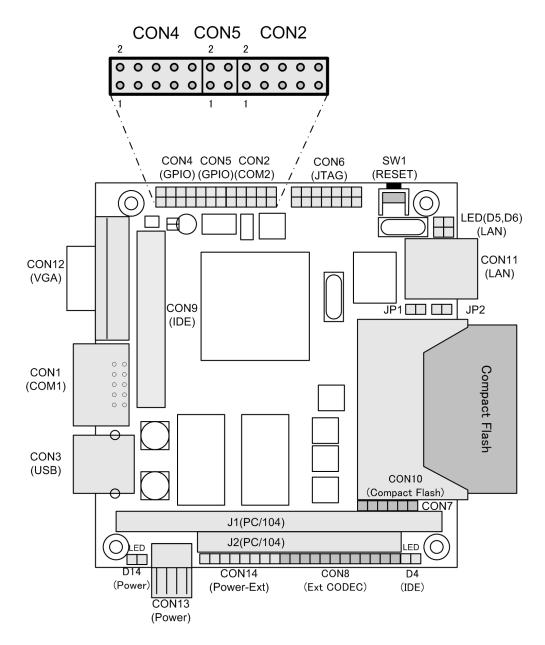


図 5.1 各種インターフェースの配置

表 5.1 各種インターフェースの内容

部品番号	インターフェース	備考
CON1	シリアルインターフェース 1	

部品番号	インターフェース	備考		
CON2	CON2 シリアルインターフェース 2			
CON3	USB インターフェース	Type-A コネクタ		
	(Host, USB2.0, FullSpeed:12Mbps)			
CON4	パラレルインターフェース(8bit 汎用入出力)	コネクタ非搭載		
CON5	パラレルインターフェース(4bit 汎用入出力)	コネクタ非搭載		
CON6	JTAG インターフェース	コネクタ非搭載		
CON7	(Reserved)	コネクタ非搭載		
CON8	同期シリアル/AC97 CODEC/I2S CODEC	コネクタ非搭載		
CON9	IDE インターフェース(2.0mm ピッチ, 44 ピン)			
CON10	コンパクトフラッシュ スロット(Type I/II, I/O/メモリカード対応)			
CON11	LAN コネクタ (10BASE-T/100BASE-TX)	RJ-45		
CON12	VGA インターフェース(D-Sub15 ピン)			
CON13	電源入力端子(5V,12V)			
CON14	拡張電源入力端子(-5V, -12V, RTC バックアップ)	コネクタ非搭載		
J1, J2	PC/104 拡張コネクタ(スタックスルー)	コネクタ非搭載		
LED (D4)	IDE アクセス	LED 非搭載		
LED (D5, 6)	LAN アクセス (Link, Active)			
LED (D14)	電源	LED 非搭載		
JP1, JP2	起動モード設定ジャンパ			
SW1	RESET スイッチ			

5.2. CON1(シリアルインターフェース 1)

CON1 は非同期(調歩同期)シリアルインターフェースです。CPU(EP9315)の UART1 と接続されています。

- ・信号入出力レベル:RS232C レベル
- ・最大データ転送レート:230.4kbps
- ・フロー制御:CTS, RTS, DTR, DSR, DCD, RI
- · FIFO:送受信ともに 16 バイト 内蔵

表 5.2 CON1 信号配列

番号	信号名	I/O	機能
1	DCD	I	EP9315 の EGPIO1 (Port A: 1)ピンに接続
2	DSR	I	EP9315 内蔵の UART1-DSR ピンに接続
3	RXD	I	EP9315 内蔵の UART1-RXD ピンに接続
4	RTS	0	EP9315 内蔵の UART1-RTS ピンに接続
5	TXD	0	EP9315 内蔵の UART1-TXD ピンに接続
6	CTS	I	EP9315 内蔵の UART1-CTS ピンに接続
7	DTR	0	EP9315 内蔵の UART1-DTR ピンに接続
8	RI	I	EP9315 の EGPIO0 (Port A:0)ピンに接続
9	GND	Power	電源(GND)
10	+3.3V	Power	電源(+3.3V) ^[1]

[1]電圧精度±5%

下記シリアル番号に該当する Armadillo-9 の CON1 同士を接続した場合、正常にデータ通信を行うことが出来ません。

これは、該当する Armadillo-9 で使用されている RS232C レベル変換 IC が互いにシャットダウンモードになってしまう為です。

· S/N: 040201-000000~040401-001994

上記シリアル番号以外の Armadillo-9 は IC を変更している為、問題が発生することはありません。

5.3. CON2(シリアルインターフェース 2)

CON2 は非同期(調歩同期)シリアルインターフェースです。CPU(EP9315)の UART2 と接続されています。

- ・信号入出力レベル:RS232C レベル
- ・最大データ転送レート:230.4kbps
- ・フロー制御:なし
- · FIFO:送受信ともに 16 バイト 内蔵

表 5.3 CON2 信号配列

番号	信号名	I/O	機能
1	-		
2	-		
3	RXD	1	EP9315 内蔵の UART2-RXD ピンに接続
4	RTS	0	CON2(6 ピン)と基板上で接続(ループバック)
5	TXD	0	EP9315 内蔵の UART2-TXD ピンに接続
6	CTS	1	CON2(4 ピン)と基板上で接続(ループバック)
7	-		
8	-		
9	GND	Power	電源(GND)
10	+3.3V	Power	電源(+3.3V) ^[1]

^[1]電圧精度±5%

5.4. CON3(USB インターフェース)

CON3 は USB シリアルインターフェースです。CPU(EP9315)上の USBO と接続されています。

- ・データ転送モード: USB2.0 Full Speed(12Mbps)、Low Speed(1.5Mbps)
- ・供給電源:電圧+5V 、電流 500mA(max)
- ・コネクタ形状:Type A

表 5.4 CON3 信号配列

番号	信号名	1/0	機能
1	+5V	Power	電源(+5V, 最大 500mA の供給可能)
2	USB-	I/O	USB のマイナス側信号
3	USB+	I/O	USB のプラス側信号
4	GND	Power	電源(GND)

Armadillo サイト [http://armadillo.atmark-techno.com/]にて、動作確認済み USB デバイス情報を 随時更新していますのでご確認ください。

5.5. CON4(パラレルインターフェース)

CON4 は汎用入出力ポートです。CPU(EP9315)の GPIO(General Purposel/O)と接続されています。CPU 内の PADR(Port A data register I/O: 0x8084~0000~番地)、PADDR(Port A data direction register I/O: 0x8084~0010~番地)、PBDR(Port B data register I/O: 0x8084~0004~番地)、PBDDR(Port B data direction register I/O: 0x8084~0014~番地)を使用して制御することができます。なお、EP9315 の Port A: $0\sim3$ 、Port B: $4\sim7~$ については、内部回路で使用しているので、ユーザ側では使用できません。

表 5.5 CON4 信号配列

番号	信号名	I/O	機能
1	GND	Power	電源(GND)
2	+3.3V	Power	電源(+3.3V) ^[1]
3	GPIO_0	I/O	汎用入出力ポート 0 (EP9315 の EGPIO4(Port A:4)ピンに接続)
4	GPIO_1	I/O	汎用入出力ポート 1 (EP9315 の EGPIO5(Port A:5)ピンに接続)
5	GPIO_2	I/O	汎用入出力ポート 2 (EP9315 の EGPIO6(Port A:6)ピンに接続)
6	GPIO_3	I/O	汎用入出力ポート 3 (EP9315 の EGPIO7(Port A:7)ピンに接続)
7	GPIO_4	I/O	汎用入出力ポート 4 (EP9315 の EGPIO8(Port B:0)ピンに接続)
8	GPIO_5	I/O	汎用入出力ポート 5 (EP9315 の EGPIO9(Port B:1)ピンに接続)
9	GPIO_6	I/O	汎用入出力ポート 6 (EP9315 の EGPIO10(Port B:2)ピンに接続)
10	GPIO_7	I/O	汎用入出力ポート 7 (EP9315 の EGPIO11(Port B:3)ピンに接続)

^[1]電圧精度±5%

パラレルインターフェースの電気的仕様は次の通りです。

表 5.6 パラレルインターフェースの電気的仕様

Symbol	Parameter	Min	Max	Unit	Conditions
V _{IH}	CMOS Input high voltage	0.65×V _{DDIO}	V _{DDIO} +0.3	V	V _{DDIO} =3.3V
V _{IL}	CMOS Input low voltage	-0.3	0.35×V _{DDIO}	V	
V _{OH}	CMOS Output high voltage	2.8		V	I _{OH} =4mA
V _{OL}	CMOS Output low voltage		0.5	V	I _{OL} =-4mA
I _{OH}	High level Output current		4	mA	
I _{OL}	Low level Output current		-4	mA	
I IL	Input leakage current		10.0	μΑ	V _{IN} =V _{DD} or GND

5.6. CON5(パラレルインターフェース)

CON5 は汎用入出力ポートです。CPU(EP9315)の GPIO(General Purpose I/O)と接続されています。CPU 内の PDDR(Port D data register I/O: $0x8084\ 000C$ 番地)、PDDDR(Port D data direction register I/O: $0x8084\ 001C$ 番地)を使用して制御することができます。パラレルインターフェースの電気的仕様は表 5-6 の通りです。なお、EP9315 の Port D:0 \sim 3 については、内部回路で使用しているので、ユーザ側では使用 できません。

表 5.7	CON5	信号配列
-------	------	------

番号	信号名	I/O	機能
1	GPIO_Ext0	I/O	汎用入出力ポート 0 (EP9315 の Port D:4 ピンに接続)
2	GPIO_Ext1	I/O	汎用入出力ポート 1 (EP9315 の Port D:5 ピンに接続)
3	GPIO_Ext2	I/O	汎用入出力ポート 2 (EP9315 の Port D:6 ピンに接続)
4	GPIO_Ext3	I/O	汎用入出力ポート 3 (EP9315 の Port D:7 ピンに接続)

5.7. CON6(EP9315 JTAG)

CON6 は Armadillo-9 に JTAG デバッガを接続するためのコネクタです。CPU(EP9315)の JTAG 信号と接続されています。

番号	信号名	I/O	機能
1	+3.3V	Power	電源(+3.3V) ^[1]
2	GND	Power	電源(GND)
3	TRST*	I	EP9315 の JTAG TRST*
4	GND	Power	電源(GND)
5	TDI	I	EP9315のJTAG TDI
6	GND	Power	電源(GND)
7	TMS	I	EP9315のJTAG TMS
8	GND	Power	電源(GND)
9	TCK	I	EP9315のJTAG TCK
10	GND	Power	電源(GND)
11	TDO	0	EP9315のJTAG TDO
12	-		(Reserved)
13	+3.3V	Power	電源(+3.3V) ^[1]
14	GND	Power	電源(GND)

^[1]電圧精度±5%

5.8. CON7

このコネクタを使用する場合の動作は保証されておりません。

5.9. CON8(同期シリアル/AC97/I2S)

CON8 は同期シリアル、AC97CODEC、オーディオ CODEC のデバイスを接続するためのコネクタですが、このコネクタを使用する場合の動作は保証されておりません。以下にピン配列を示します。

表 5.8 CON8 信号配列

番号	信号名	I/O	機能
1	GND	Power	電源(GND)
2	ASDI	I	表 5-9 を参照(CPU:ASDI)
3	ARST*	0	表 5-9 を参照(CPU:ARST*)
4	ASDO	0	表 5-9 を参照(CPU:ASDO)
5	ASYNC	0	表 5-9 を参照(CPU:ASYNC)
6	ABITCLK	I	表 5-9 を参照(CPU:BITCLK)
7	+3.3V	Power	電源(+3.3V) ^[1]
8	SSPRX1		表 5-9 を参照 (CPU:SSPRX1)
9	SSPTX1	0	表 5-9 を参照 (CPU: SSPTX1)
10	SFRM1	0	表 5-9 を参照 (CPU:SFRM1)
11	SCLK1	0	表 5-9 を参照 (CPU:SCLK1)
12	GND	Power	電源(GND)

^[1]電圧精度±5%

CON8 のピンに割り当てられる機能は、EP9315 のレジスタ設定によって切り替えることができます。「Normal Mode」、「I2S on AC97 Mode」、「I2S on SSP Mode」の3 つモードがあり、0x8093 0080 番地の DeviceCfg Register の「bit6:I2S on AC97」、「bit7:I 2S on SSP」を書き換えることでモード変更をすることができます。

表 5.9:	各モー	ドにおける	ピンの機能
--------	-----	-------	-------

ピン名	Normal Mode	I2S on SSP Mode	I2S on AC97 Mode
SSPRX1	SPI Serial Input	I2S Serial Input	SPI Serial Input
SSPTX1	SPI Serial Output	I2S Serial Output	SPI Serial Output
SFRM1	SPI Frame Clock	I2S Frame Clock	SPI Frame Clock
SCLK1	SPI Bit Clock	I2S Serial Clock	SPI Bit Clock
ASDI	AC97 Serial Input	AC97 Serial Input	I2S Serial Input
ASDO	AC97 Serial Output	AC97 Serial Output	I2S Serial Output
ASYNC	AC97 Frame Clock	AC97 Frame Clock	I2S Frame Clock
ABITCLK	AC97 Bit Clock	AC97 Bit Clock	I2S Serial Clock
ARST*	AC97 Reset	AC97 Reset	I2S Master Clock

5.10. CON9(IDE インターフェース)

CON9 は IDE のデバイスを接続するための 2mm ピッチ 44 ピンコネクタです。2.5 インチのハードディスクドライブとストレートのフラットケーブルで接続することができます。転送モードは PIO モードの他 に ATA33 に対応しています。以下にピン配列を示します。

表 5.10 CON9 信号配列

番号	信号名	I/O	機能
1	RESET*	0	リセット信号
2	GND	Power	電源(GND)
3	DD7	I/O	データバス(bit7)
4	DD8	I/O	データバス(bit8)
5	DD6	I/O	データバス(bit6)
6	DD9	I/O	データバス(bit9)
7	DD5	I/O	データバス(bit5)
8	DD10	I/O	データバス(bit10)
9	DD4	I/O	データバス(bit4)
10	DD11	I/O	データバス(bit11)
11	DD3	I/O	データバス(bit3)
12	DD12	I/O	データバス(bit12)
13	DD2	I/O	データバス(bit2)
14	DD13	I/O	データバス(bit13)
15	DD1	I/O	データバス(bit1)
16	DD14	I/O	データバス(bit14)
17	DD0	I/O	データバス(bit0)
18	DD15	I/O	データバス(bit15)
19	GND	Power	電源(GND)
20	NC	-	非サポート
21	DMARQ	I	DMA リクエスト
22	GND	Power	電源(GND)
23	DIOW*	0	I/O ライト・イネーブル
24	GND	Power	電源(GND)
25	DIOR*	0	I/O リード・イネーブル
26	GND	Power	電源(GND)
27	IORDY	I	IO レディ
28	CSEL	0	ケーブルセレクト(GND)

番号	信号名	I/O	機能
29	DMACK*	0	DMA アクノリッジ
30	GND	Power	電源(GND)
31	INTRQ	I	割り込みリクエスト
32	NC	-	非サポート
33	DA1	0	アドレスバス(bit1)
34	NC	-	非サポート
35	DA0	0	アドレスバス(bit0)
36	DA2	0	アドレスバス(bit2)
37	CS0*	0	チップセレクト 0
38	CS1*	0	チップセレクト 1
39	DASP*	I	デバイスアクセス
40	GND	Power	電源(GND)
41	+5V	Power	電源(+5V)
42	+5V	Power	電源(+5V)
43	GND	Power	電源(GND)
44	NC	-	非サポート

5.11. CON10(コンパクトフラッシュ)

CON10 はコンパクトフラッシュ のインターフェースです。I/O モード、メモリモードに対応しており、ATA デ バイスや I/O カードを接続することができます。

- ・接続モード:I/O モード、メモリモード
- · 対応形状:Type I、Type II
- ・3.3V カード専用、活線挿抜(ホットプラグ)対応

表 5.11 CON10 信号配列

番号	信号名	I/O	機能
1	GND	Power	電源(GND)
2	D3	I/O	データバス(bit3)
3	D4	I/O	データバス(bit4)
4	D5	I/O	データバス(bit5)
5	D6	I/O	データバス(bit6)
6	D7	I/O	データバス(bit7)
7	CE1*	0	カードイネーブル信号 1
8	A10	0	アドレスバス(bit10)
9	OE*	0	データアウトイネーブル
10	A9	0	アドレスバス(bit9)
11	A8	0	アドレスバス(bit8)
12	A7	0	アドレスバス(bit7)
13	+3.3V	Power	電源(+3.3V) ^[1]
14	A6	0	アドレスバス(bit6)
15	A5	0	アドレスバス(bit5)
16	A4	0	アドレスバス(bit4)
17	A3	0	アドレスバス(bit3)
18	A2	0	アドレスバス(bit2)
19	A1	0	アドレスバス(bit1)
20	A0	0	アドレスバス(bit0)
21	D0	I/O	データバス(bit0)
22	D1	I/O	データバス(bit1)
23	D2	I/O	データバス(bit2)

番号	信号名	I/O	機能
24	IOCS16*	I	I/O 16bit
25	CD2*	I	カード検出
26	CD1*	I	カード検出
27	D11	I/O	データバス(bit11)
28	D12	I/O	データバス(bit12)
29	D13	I/O	データバス(bit13)
30	D14	I/O	データバス(bit14)
31	D15	I/O	データバス(bit15)
32	CE2*	0	カードイネーブル信号 2
33	VS1*		
34	IORD*	0	I/O リード・イネーブル
35	IOWR*	0	I/O ライト・イネーブル
36	WE*	0	ライトイネーブル
37	IREQ	I	割り込み要求
38	+3.3V	Power	電源(+3.3V) ^[1]
39	-	-	
40	VS2*		
41	RESET*	0	リセット
42	WAIT*	I	ウエイト
43	-	-	
44	REG*	0	レジスタセレクト, I/O イネーブル
45	BVD2	I	
46	BVD1	I	
47	D8	I/O	データバス(bit8)
48	D9	I/O	データバス(bit9)
49	D10	I/O	データバス(bit10)
50	GND	Power	電源(GND)

^[1]電圧精度±5%

Armadillo サイト [http://armadillo.atmark-techno.com/]にて、動作確認済みコンパクトフラッシュを随時更新していますのでご確認ください。

5.12. CON11(LAN コネクタ)

CON11 は 10BASE-T/100BASE-TX の LAN インターフェースです。カテゴリ 5 以上の Ethernet ケーブルを接続することができます。通常はハブに対してストレートケーブルで接続しますが、クロスケーブルを使用して直接パソコン等の機器と接続することもできます。搭載している PHY チップ(LXT97x)の割り込み出力信号(MDINT*)は未接続(開放)となっています。

表 5.12 CON11 信号配列

番号	信号名	I/O	機能
1	TX+	0	差動のツイストペア送信出力(+)
2	TX-	0	差動のツイストペア送信出力(-)
3	RX+	I	差動のツイストペア受信入力(+)
4	-	-	
5	-	-	
6	RX-	I	差動のツイストペア受信入力(-)

番号	信号名	1/0	機能
7	-	-	
8	-	-	

5.13. CON12(VGA コネクタ)

CON12 は汎用のディスプレイを接続する為の VGA コネクタ(ミニ D-Sub15 ピン)です。汎用の CRT、液晶ディスプレイを接続することができます。

表 5.13 CON12 信号配列

番号	信号名	I/O	機能
1	RED	0	アナログ 色信号(赤)
2	GREEN	0	アナログ 色信号(緑)
3	BLUE	0	アナログ 色信号(青)
4	-	-	
5	GND	Power	信号接地(GND)
6	GND	Power	信号接地(GND)
7	GND	Power	信号接地(GND)
8	GND	Power	信号接地(GND)
9	-	-	
10	GND	Power	信号接地(GND)
11	-	-	
12	-	-	
13	H_SYNC	0	水平同期信号
14	V_SYNC	0	垂直同期信号
15	-	1	

表 5.14 解像度と水平周波数

解像度	色数	水平周波数(垂直周波数)
640×480	8/16bit	31.5kHz(60Hz)
800×600	8/16bit	37.9kHz(60Hz)
1024×768	8bit	48.4kHz(60Hz)

5.14. CON13(電源入力コネクタ)

Armadillo-9 に供給する電源接続コネクタです。Armadillo-9 の動作に必要な最低限の電源は+5V-GNDです。+12V は PC/104 の+12V 供給ピンにそのまま接続されます。

表 5.15 CON13 信号配列

番号	信号名	1/0	機能	
1	1 +5V Power	Dower	電源(+5V)入力	
'		PC/104 の+5V、 IDE の+5V ピンに供給されます		
2	GND	Power	電源(GND)	
3	GND	Power	電源(GND)	
4	4 +12V Power		電源(+12V)入力 ^[1]	
4	+12V	Power	PC/104 の+12V ピンに供給されます。	

______ ^[1] Armadillo-9 の動作には必要ありません。

5.15. CCON14(拡張電源入力)

Armadillo-9 に供給する電源接続コネクタです。

表 5.16	S CONT	4 信号配列
--------	--------	--------

番号	信号名	I/O	機能
1	GND	Power	電源(GND)
2	BAT	Power	RTC(S-353xxA)バックアップ用電源入力 ^[1]
3	GND	Power	電源(GND)
4	EXTIRQ	I/O	JP3 をショートしている場合: CPU(EP9315)の割込み入力信号(INTO)に接続 JP4 をショートしている場合: RTC(S-353xxA)の割込み出力信号に接続 (S-3531A は INT*、S-35380A または S-35390A では INT2*)
5	GND	Power	電源(GND)
6	-5V	Power	電源(-5V)入力 ^[1] PC/104 の-5V ピンに供給
7	GND	Power	電源(GND)
8	-12V	Power	電源(-12V)入力 ^[1] PC/104 の-12V ピンに供給

^[1] Armadillo-9 の動作には必要ありません。

5.16. J1, J2(PC/104 準拠拡張バス)

J1, J2 は PC/104 準拠のバス配列を採用した拡張バスです $^{[1]}$ 。64kB の I/O エリアと 16Mbyte のメモリエリアを持っています。しかし ARM アーキテクチャは x86 系 CPU のような I/O エリア(I/O 専用のアクセス)を持たないため、通常のメモリ空間に I/O エリアを配置しています。

また、この拡張バスは PC/104 規格のサブセットです。通常の PC/104 バスとの主な違いは次の通りです。

- ・ダイナミックバスサイジングを非サポート
- ・DMA(DREQ/DACK)を非サポート
- 外部マスタを非サポート
- バスアクセスサイクルが固定

表 5.17 J1 信号配列(1)

ピン番号	信号名	I/O	機能
A1	IOCHCHK*	(I)	非サポート (未接続) ^[1]
A2	D7	I/O	データバス(bit7)
A3	D6	I/O	データバス(bit6)
A4	D5	I/O	データバス(bit5)
A5	D4	I/O	データバス(bit4)
A6	D3	I/O	データバス(bit3)
A7	D2	I/O	データバス(bit2)
A8	D1	I/O	データバス(bit1)
A9	D0	I/O	データバス(bit0)
A10	IOCHRDY*	I	低速デバイスに合わせてアクセスサイクル延長 (5V プルアップ) ^[1]
A11	AEN	0	バス開放(GND)
A12	A19	0	アドレスバス(bit19)
A13	A18	0	アドレスバス(bit18)
A14	A17	0	アドレスバス(bit17)

^[1]各信号は TTL レベルです。(VOH:2.4V 以上,VOL:0.4V 以下,VIH:2V 以上,VIL:0.8V 以下)

ピン番号	信号名	I/O	機能
A15	A16	0	アドレスバス(bit16)
A16	A15	0	アドレスバス(bit15)
A17	A14	0	アドレスバス(bit14)
A18	A13	0	アドレスバス(bit13)
A19	A12	0	アドレスバス(bit12)
A20	A11	0	アドレスバス(bit11)
A21	A10	0	アドレスバス(bit10)
A22	A9	0	アドレスバス(bit9)
A23	A8	0	アドレスバス(bit8)
A24	A7	0	アドレスバス(bit7)
A25	A6	0	アドレスバス(bit6)
A26	A5	0	アドレスバス(bit5)
A27	A4	0	アドレスバス(bit4)
A28	A3	0	アドレスバス(bit3)
A29	A2	0	アドレスバス(bit2)
A30	A1	0	アドレスバス(bit1)
A31	A0	0	アドレスバス(bit0)
A32	GND	Power	電源(GND)

[1]プルアップやプルダウンで論理を固定していたり、未接続であることを括弧内の表示で示しています。論理を固定している場合、すべて Armadillo-9 の基板上に搭載された抵抗でおこなっています。

表 5.18 J1 信号配列(2)

ピン番号	信号名	I/O	機能
B1	GND	Power	電源(GND)
B2	RESET_DRV	0	リセット出力
B3	+5V	Power	電源(+5V)
B4	IRQ9	I	割り込みリクエスト 9(5V プルアップ) ^[1]
B5	-5V	Power	電源(-5V)
В6	DRQ2	(I)	非サポート(未接続)[1]
B7	-12V	Power	電源(-12V)
B8	ENDXFR*	(I)	非サポート(5V プルアップ) ^[1]
В9	+12V	Power	電源(+12V)
B10	(KEY)	-	GND
B11	SMEMW*	0	メモリ・ライト・ストローブ
B12	SMEMR*	0	メモリ・リード・ストローブ
B13	IOW*	0	1/0 ライト・ストローブ
B14	IOR*	0	I/O リード・ストローブ
B15	DACK3*	(O)	非サポート(3.3V プルアップ) ^[1]
B16	DRQ3	(I)	非サポート(未接続)[1]
B17	DACK1*	(O)	非サポート(3.3V プルアップ) ^[1]
B18	DRQ1	(I)	非サポート(未接続)[1]
B19	REFRESH*	(O)	非サポート(3.3V プルアップ) ^[1]
B20	SYSCLK	0	8.333MHz(CPU バスクロックの 1/12)
B21	IRQ7	I	割り込みリクエスト 7(5V プルアップ) ^[1]
B22	IRQ6	I	割り込みリクエスト 6(5V プルアップ) ^[1]
B23	IRQ5	I	割り込みリクエスト 5(5V プルアップ) ^[1]
B24	IRQ4	I	割り込みリクエスト 4(5V プルアップ) ^[1]
B25	IRQ3	I	割り込みリクエスト 3(5V プルアップ) ^[1]
B26	DACK2*	(O)	非サポート(3.3V プルアップ) ^[1]
B27	T/C	(O)	非サポート(3.3V プルアップ) ^[1]
B28	BALE	0	アドレス・ラッチ・イネーブル
B29	+5V	Power	電源(+5V)
B30	OSC	(O)	非サポート(未接続) ^[1]

ピン番号	信号名	1/0	機能
B31	GND	Power	電源(GND)
B32	GND	Power	電源(GND)

^[1]プルアップやプルダウンで論理を固定していたり、未接続であることを括弧内の表示で示しています。論理を固定している場合、すべて Armadillo-9 の基板上に搭載された抵抗でおこなっています。

表 5.19 J2 信号配列(1)

ピン番号	信号名	I/O	機能
CO	GND	Power	電源(GND)
C1	SBHE*	0	バス・ハイ・イネーブル
Ci	SDITE		(データバス上位 8bit 使用時にアクティブ)
C2	A23	0	アドレスバス(23bit)
C3	A22	0	アドレスバス(22bit)
C4	A21	0	アドレスバス(21bit)
C5	A20	0	アドレスバス(20bit)
C6	A19	0	アドレスバス(19bit)
C7	A18	0	アドレスバス(18bit)
C8	A17	0	アドレスバス(17bit)
C9	MEMR*	0	メモリ・リード・ストローブ
C10	MEMW*	0	メモリ・ライト・ストローブ
C11	D8	I/O	データバス(bit8)
C12	D9	I/O	データバス(bit9)
C13	D10	I/O	データバス(bit10)
C14	D11	I/O	データバス(bit11)
C15	D12	I/O	データバス(bit12)
C16	D13	I/O	データバス(bit13)
C17	D14	I/O	データバス(bit14)
C18	D15	I/O	データバス(bit15)
C19	(KEY)	-	GND

表 5.20 J2 信号配列(2)

ピン番号	信号名	I/O	機能
D0	GND	Power	電源(GND)
D1	MEMCS16*	(I)	非サポート(5V プルアップ) ^[1]
D2	IOCS16*	(I)	非サポート(5V プルアップ) ^[1]
D3	IRQ10	I	割り込みリクエスト 10(5V プルアップ) ^[1]
D4	IRQ11	I	割り込みリクエスト 11(5V プルアップ) ^[1]
D5	IRQ12	I	割り込みリクエスト 12(5V プルアップ) ^[1]
D6	IRQ15	I	割り込みリクエスト 15(5V プルアップ) ^[1]
D7	IRQ14	I	割り込みリクエスト 14(5V プルアップ) ^[1]
D8	DACK0*	(O)	非サポート(3.3V プルアップ) ^[1]
D9	DREQ0	(I)	非サポート
D10	DACK5*	(O)	非サポート(3.3V プルアップ) ^[1]
D11	DREQ5	(I)	非サポート
D12	DACK6*	(O)	非サポート(3.3V プルアップ) ^[1]
D13	DREQ6	(I)	非サポート
D14	DACK7*	(O)	非サポート(3.3V プルアップ) ^[1]
D15	DREQ7	(I)	非サポート
D16	+5V	Power	電源(+5V)
D17	MASTER*	(I)	非サポート(5V プルアップ) ^[1]
D18	GND	Power	電源(GND)
D19	GND	Power	電源(GND)

^[1]プルアップやプルダウンで論理を固定していたり、未接続であることを括弧内の表示で示しています。論理を固定している場合、すべて Armadillo-9 の基板上に搭載された抵抗でおこなっています。

5.16.1. PC/104 拡張バスアクセス時の注意事項

Armadillo-9 の PC/104 拡張バスはダイナミックバスサイジング機能を備えていないため、PC/104 の I/O エリアまたはメモリエリアにアクセスする際には注意が必要です。Armadillo-9 は 1 つの I/O 実 エリア(64kB)とメモリ実エリア(16MB)を持っています。I/O、メモリのそれぞれの実エリアには 2 つの 仮想エリア(8bit,16bit)からアクセスすることができます。どちらの仮想エリアを使っても同じ実エリアをアクセスすることになります。

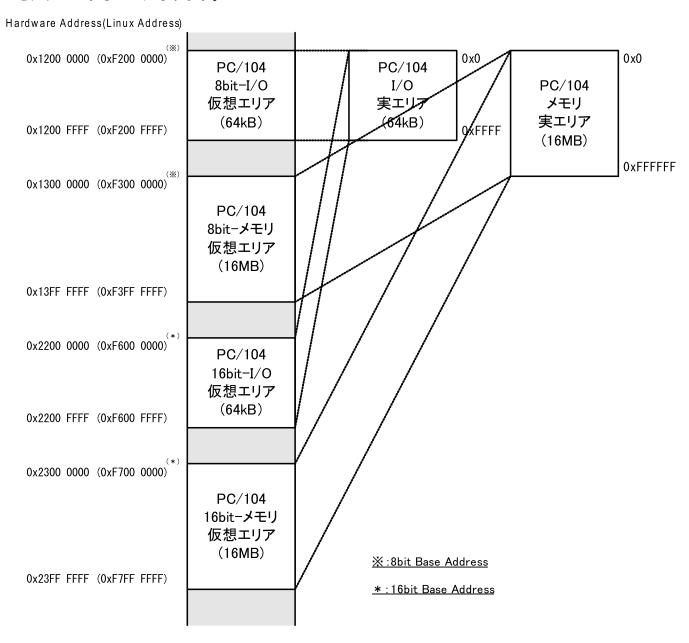


図 5.2 PC/104 バスのメモリ空間

それぞれの仮想エリアの使い分けは次のとおりです。

8bit 仮想エリア	・データバス(D7~D0)を使用して 8bit アクセスをする
	・データバス(D15~D8)を使用して奇数アドレス番地に 8bit アクセスする
16bit 仮想エリア	・データバス(D7~D0)を使用して偶数アドレス番地に 8bit アクセスする
	・データバス(D15~D0)を使用して 16bit アクセスする

実エリアのアクセスには

・8(16)bit Base Address + 実工リアの offset Address でアクセスすることができます。

8bit実エリアにアクセス 8bit仮想エリア D7 D0 +0x0 8bit Base Address +0x1 +0x2 +0x3 +0x4 +0x5: 実エリア +0x0 +0x1 16bit実エリアに8bit単位でアクセス +0x2 16bit仮想エリア +0x3 D15 D8D7 D0 +0x4+0x1 +0x0+0x5 16bit Base Address +0x6 +0x3+0x2 +0x5 +0x4 +0x716bit実エリアに16bit単位でアクセス 16bit仮想エリア D8D7 D15 D0 +0x0 16bit Base Address +0x2 +0x4

図 5.3 PC/104 バスへのアクセス方法

5.16.2. アクセスタイミング

PC/104 拡張バスへのアクセスタイミングは次の通りです。16bit アクセスした場合も 8bit アクセスした 場合もタイミングは同じです。

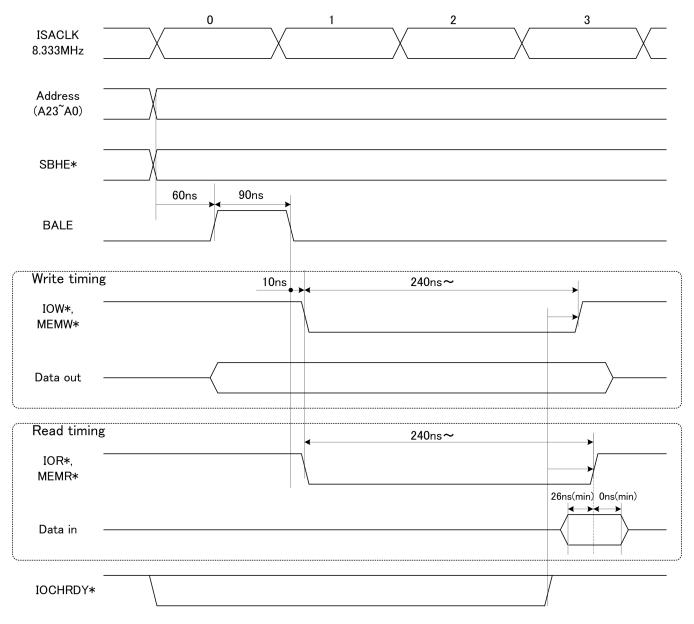


図 5.4 PC/104 バスアクセスタイミング

5.17. LED (D4)

LED(D4)は IDE のアクセスランプです

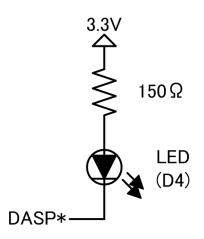


図 5.5 LED(D4)の接続

5.18. LED (D5, D6)

LED(D5,6)は LAN の状態を表しています。

表 5.21 LED(D5,D6) の状態

部品番号	名称	点灯	消灯
D5	LINK	LAN ケーブルが接続されており、10BASE-T または 100BASE-TX のリンクが確立されている	LAN ケーブルが接続されていないか、接続している相手の状態が Active な状態ではない
D6	LAN	データ送受信時	非データ送受信時

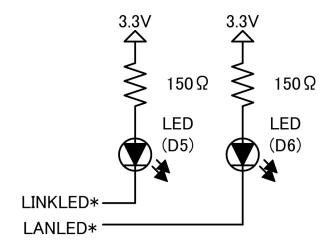


図 5.6 LED(D5,6)の接続

5.19. LED (D14)

LED(D14)は Armadillo-9 の電源状態を表しています。

表 5.22 LED(D14) の状態

部品番号	名称	点灯	消灯		
D14	Power	Armadillo-9 の電源が入っている	Armadillo-9 の電源が入っていない		

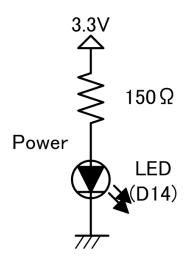


図 5.7 LED(D14)の接続

5.20. JP1, JP2

JP1,JP2 は Armadillo-9 の起動モードの設定を行います。

5.20.1. JP1(ブート ROM の選択)

ブートする際に使用するデバイスを、「オンボードフラッシュメモリ」または「オンチップブート ROM」から選択することができます。オンチップブート ROM はシリアルインターフェース 1 からプログラムをダウンロードしてから実行し、オンボードフラッシュメモリを書き換えるとき等に使用します。オンチップブート ROM の詳細については、「EP9315 User's Guide」をご参照ください。

5.20.2. JP2(ブート Linux の選択)

Linux カーネルが格納されているデバイスを選択することができます。ただしこの JP の設定は Linux を搭載しているときのみ有効です。

表 5.23 ジャンパの設定と動作

JP1	JP2	ブートデバイス	ブートカーネル
OFF	OFF	オンボードフラッ シュメモリ	オンボードフラッシュメモリの Linux カーネル
			1. IDE デバイスが搭載されている場合 IDE デバイスの Linux カーネルがブート
		+ +* * ¬ =	2. コンパクトフラッシュ が搭載されている場合 コンパクトフラッシュ の Linux カーネルがブート
OFF	・ ON オンボードフラッ シュメモリ	3. IDE デバイスもコンパクトフラッシュも搭載されていない場合 ブートローダ「Hermit」がブート	
		4. IDE デバイスにもコンパクトフラッシュにも Linux カーネルを見つけられない場合 ブートローダ「Hermit」がブート	
ON	-	オンチップブート ROM	オンチップブート ROM のプログラムがブート

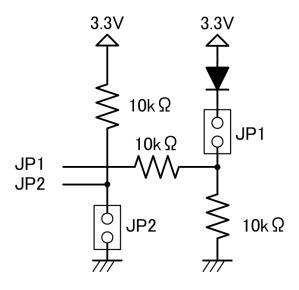


図 5.8 ジャンパコネクタ

5.21. コネクタ/スイッチ型式

CON1~14、J1~2、SW1 の型式等を表 5-24 に示します。

部品番号	メーカ	型式	備考
CON1	ヒロセ電機	HIF3F-10PA-2.54DS	逆挿入防止形ボックス
CON2	-	2×5 (2.54mm ピッチ)	(非搭載)
CON3	日本圧着端子	UBA-4R-S14-2	USB コネクタ(Type A)
CON4	-	2×5 (2.54mm ピッチ)	(非搭載)
CON5	-	2×2 (2.54mm ピッチ)	(非搭載)
CON6	-	2×7 (2.54mm ピッチ)	(非搭載)
CON7	-	1×6 (2.54mm ピッチ)	(非搭載)
CON8	-	1×12 (2.54mm ピッチ)	(非搭載)
CON9	ヒロセ電機	A3A-44PA-2SV	44 ピン(2.0mm ピッチ)
CON10	第一電子工業	MCD-CEN750PC	コンパクトフラッシュコネクタ
CONTO	另一电丁 <u>工</u> 来	WCD-CEN750FC	(Type I, II)
CON11	Full Rise Electronic	E5388-F00214	RJ-45 コネクタ
CON12	日本圧着端子	KSEY-15S-3B6L19-13	ミニ D-Sub15 ピンコネクタ
CON13	Tyco Electronics	171826-4	4 ピン(2.5mm ピッチ)
CON14	-	1×8 (2.54mm ピッチ)	(非搭載)
Jl	Astron	AT-ES1-64-12-2-GF	PC/104 J1 スタックスルー
JI	ASHOH	A1-E31-04-12-2-GF	(非搭載)
J2	Astron	AT-ES1-20-12-1-GF(2 個)	PC/104 J2 スタックスルー
JL	ASHOH	A1-L31-20-12-1-G1 (2 回)	(非搭載)
SW1	アルプス電気	SKHHI MA010	タクトスイッチ

表 5.24 コネクタ/スイッチ型式の一覧

5.22. LED 型式(参考)

Armadillo-9 に接続できる LED の型式等の例を表 5-25 に示します。

表 5.25 LED 型式の例

部品番号	メーカ	型式	備考
D4	東芝	TLR123 等	Red
D5, 6	Dialight	553-0112-200等	Red / Green
D14	東芝	TLG123A 等	Green

6. その他の各種機能

6.1. CPLD 内部レジスタ(I/O Control Register)

6.1.1. I/O Control レジスタのメモリマップ

Armadillo-9 の CPLD には PC/104 の I/O を制御するための I/O Control レジスタがあります。I/O Control レジスタのメモリマップは次の通りです。

表 6.1 I/O Control レジスタのメモリマップ

Hardware Address	Linux Address	Read	Write
0x1000 0000	0xF000 0000	Interrupt Service Register0	Interrupt Clear Register0
0x1000 0001	0xF000 0001	(Reserved)	(Reserved)
0x1000 0002	0xF000 0002	Interrupt Service Register1	Interrupt Clear Register1
0x1000 0003	0xF000 0003	(Reserved)	(Reserved)
0x1000 0004	0xF000 0004	Interrupt Service Register2	Interrupt Clear Register2
0x1000 0005	0xF000 0005	(Reserved)	(Reserved)
0x1000 0006	0xF000 0006	(Reserved)	(Reserved)
0x1000 0007	0xF000 0007	(Reserved)	(Reserved)
0x1000 0008	0xF000 0008	(Reserved)	Interrupt Mask Register0
0x1000 0009	0xF000 0009	(Reserved)	(Reserved)
0x1000 000A	0xF000 000A	(Reserved)	Interrupt Mask Register1
0x1000 000B	0xF000 000B	(Reserved)	(Reserved)
0x1000 000C	0xF000 000C	(Reserved)	Interrupt Mask Register2
0x1000 000D	0xF000 000D	(Reserved)	(Reserved)
0x1000 000E	0xF000 000E	(Reserved)	ISA mode Control Register
0x1000 000F	0xF000 000F	(Reserved)	(Reserved)

Interrupt Service Register(割 入ってきた割り込みの要因を見るレジスタです。 り込みサービスレジスタ)

Interrupt Clear Register(割り 割り込みサービスレジスタに入ってきた割り込み要因をクリアする 込み要因クリアレジスタ) レジスタです。

Interrupt Mask Register(割り 各種割り込みの入力を禁止(マスク)するレジスタです。 込みマスクレジスタ)

ISA mode Control Register PC/104(ISA) の転送モード及びリセットを設定するレジスタです。

6.1.2. 各種 I/O Control レジスタの詳細

各種 I/O Control レジスタの詳細は次のとおりです。

表 6.2 各種 I/O Control レジスタの詳細

Register	Hardware	Linux					Da	ta		
Name	Address	Address	7	6	5	4	3	2	1	0
Read Only										
Interrupt Service Register0	0x1000 0000	0xF000 0000	-	-	-	-	-	IRQ15	IRQ14	IRQ12

Register	Hardware	Linux					Da	ta		
Name	Address	Address	7	6	5	4	3	2	1	0
Interrupt Service Register 1	0x1000 0002	0xF000 0002	-	-	ı	ı	IRQ11	IRQ10	IRQ9	IRQ7
Interrupt Service Register2	0x1000 0004	0xF000 0004	-	-	-	-	IRQ6	IRQ5	IRQ4	IRQ3
Write Only										
Interrupt Clear Register0	0x1000 0000	0xF000 0000	-	-	-	-	-	IRQ15	IRQ14	IRQ12
Interrupt Clear Register1	0x1000 0002	0xF000 0002	-	-	-	-	IRQ11	IRQ10	IRQ9	IRQ7
Interrupt Clear Register2	0x1000 0004	0xF000 0004	-	-	-	-	IRQ6	IRQ5	IRQ4	IRQ3
Interrupt Mask Register0	0x1000 0008	0xF000 0008	-	-	-	-	-	IRQ15	IRQ14	IRQ12
Interrupt Mask Register I	0x1000 000A	0xF000 000A	-	-	-	ı	IRQ11	IRQ10	IRQ9	IRQ7
Interrupt Mask Register2	0x1000 000C	0xF000 000C	-	-	ı	ı	IRQ6	IRQ5	IRQ4	IRQ3
ISA mode Control Register	0x1000 000E	0xF000 000E	-	-	-	-	-	ISA reset	ISA mode	-

表 6.3 各種 I/O Control レジスタの各ビットの意味

Register name		Value	Description
Interrupt Service Regis	tor	1	IRQx 割込みが発生している
Interrupt Service Regis	lei	0	IRQx 割込みが発生していない
Interrupt Clear Registe	or.	1	IRQx 割込みの要因をクリアする
Interrupt Clear Registe	51	0	IRQx 割込みの要因をクリアしない
Interrupt Mask Registe	ar	1	IRQx 割込みの入力をマスクする
Interrupt Mask Registe	2 1	0	IRQx 割込みの入力をマスクしない
	ISA mode	1	高速(ISA 非互換)モード ^[1]
ICA made Control Degister	ISA Mode	0	ISA 互換モード
ISA mode Control Register	ISA reset	1	PC/104 Bus の RESET 信号を ON(H)
	ISA reset	1	PC/104 Bus の RESET 信号を OFF(L)

^[1] このモードを設定したときの動作は保証されておりません。

6.1.3. PC/104 の割り込みコントローラの仕組み

PC/104 の割り込みコントローラは CPLD(XCR3064) に組み込まれています。この割り込みコントローラ に接続されている割り込みの種類は IRQ3, 4, 5, 6, 7, 9, 10,11,12, 14, 15 です。割り込みコントローラの概念図は次のとおりです。

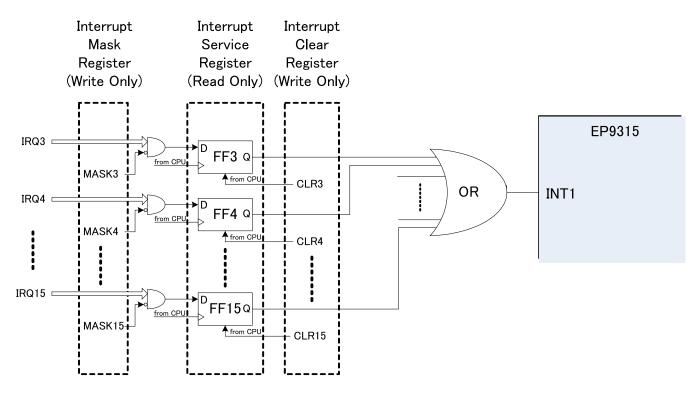


図 6.1 PC/104 の割り込みコントローラの仕組み

IMR ICR **ISR IRQx** CLK **MASKx CLRx FF**x 0 0 0 0 rise 1 1 edge 0 1 0

表 6.4 割り込み 真理値表[]]

[1] * : Don't Care

IRQx は、アクティブハイ信号です。PC/104 から入力される IRQx は IMR(Interrupt Mask Register) によりマスク処理されます。マスクビットが"0"の場合、割り込み入力はそのまま通過し次段の FF に入力されます。マスクビットが"1"の場合割り込み入力がマスクされ、次段の FF には"0"が入力されます。

マスク処理を通過した割り込み入力信号は次段の ISR(Interrupt Service Register)を構成しているFF(フリップフロップ)で値を保持されます。

ISR に保持されている値は、ICR(Interrupt Clear Register)の対応するビットに"1"が入力されるまで値が保持されます。

ISR に保持されているすべての値の OR をとって、CPU(EP9315)の INT1 として割り込みが通知されます。INT1 は、アクティブハイ信号です。

6.2. 外部割込みについて

ボード外部から CON14 を通して CPU(EP9315)の割込み入力端子や RTC(S-353xxA)の割込み出力端子に 接続することができます。

CON14 の 4 番ピンと CPU(EP9315)の割込み入力端子(INTO)を接続する場合は JP3 をショートします。 CPU(EP9315)の INTO 端子は、CMOS3.3V の電圧レベル入力です。

CON14 の 4 番ピンと RTC(S-353xxA)の割込み出力端子を接続する場合は JP4 をショートします。 RTC(S-353xxA)の割込み端子は、Nch オープンドレイン出力です。(S-3531A は INT*端子、S-35380A ま たは S-35390A では INT2*端子に接続されます。)

工場出荷状態では、JP3.4 はオープンになっています。

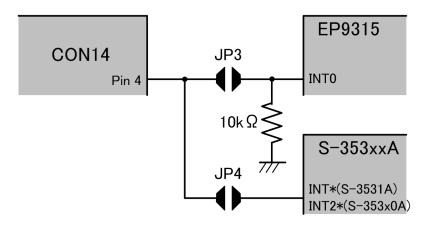


図 6.2 EXTIRQ の接続

RTC(S-353xxA)の割込み端子はオープンドレイン出力のため、使用する場合には外付けにプルアップ抵抗が必要となります。また、端子には電源側の保護ダイオードが付いていないため、プルアップ抵抗の電源は必ず、Armadillo-9の+3.3Vを使用してください。

6.3. LED(D1, D2)

LED(D1)は CPU(EP9315)の PEO/GRLED ピンに接続された LED です。内蔵 ROM 起動時にステータス LED として機能した後、EP9315 の GPIO Port E を設定することにより、LED(D1)を制御することができます。LED(D2)は基板リビジョン $^{[1]}$ により仕様が変わります。

6.3.1. 基板リビジョン E 以前の LED(D2)仕様

LED(D2)は CPU(EP9315)の PE1/RDLED ピンに接続された LED ですが、この LED の信号は内部回路で使用していますので、設定を変更しないでください。

^[1]基板リビジョンは基板半田面側に記載しています。記載例:[Rev.E]

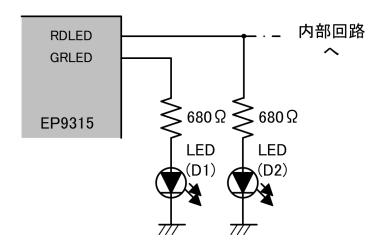


図 6.3 LED(D1,D2)の接続(基板リビジョン E 以前)

6.3.2. 基板リビジョン E 以後の LED(D2)仕様

LED(D2)は CPU(EP9315)の GPIO Port C:7 ピンに接続された LED です。EP9315 の GPIO Port C を設定することにより、LED(D2)を制御することができます。

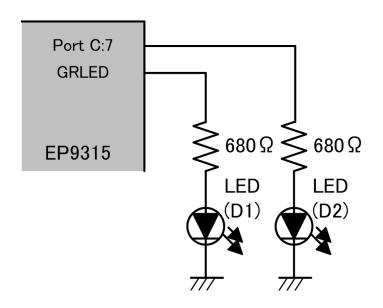


図 6.4 LED(D1,D2)の接続(基板リビジョン E 以後)

6.4. カレンダ時計(Real Time Clock)

カレンダ時計(Real Time Clock: S-3531A またはその互換品)は CPU(EP9315)と 2 線式シリアル (GPIO) で接続されています。CPU 側はパラレルポート B(PB4,5:EGPIO12,EGPIO13)をシリアルのように制御す ることにより、RTC へのアクセスを実現しています。

RTC はポリアセンキャパシタ(PAS)のバックアップにより電源切断時も一定時間の間動作することができます。長時間電源を切っている間も、RTC の内容を保持したい場合は、別途外付けのバッテリーを接続することができます。(データ保持電圧範囲 1.7~3.3V、消費電流 0.7uA Typ.)

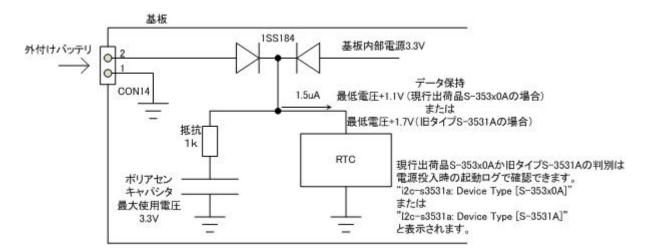


図 6.5 外付けバッテリーの接続

RTC の保持に使用しているポリアセンキャパシタは温度によって寿命/充放電回数が著しく異なります。また、ポリアセンキャパシタは交換不可です。そのため、RTC バックアップが重要なシステムにおいては、別途バックアップ用電池をご使用下さい。バックアップ用電池をご利用になる場合、電圧は 3.3V を越えないように設計してください。

6.5. 電源回路の構成

Armadillo-9 内の電源回路の構成は図 6-5 の通りです。各制限の電流容量を超えないように、外部機器の接続、供給電源の設計を行ってください。

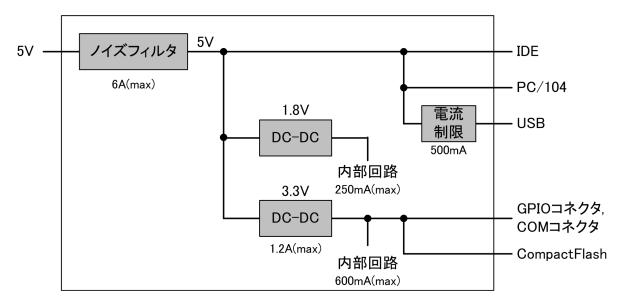


図 6.6 Armadillo-9 の電源回路構成

7. 基板形状図

型番 AN010 は PC/104 バスのコネクタが実装されていないもの、型番 AN011 は PC/104 バスのコネクタが実装されたものです。コネクタの実装以外機能の違いはありません。

7.1. ANO10 基板形状図

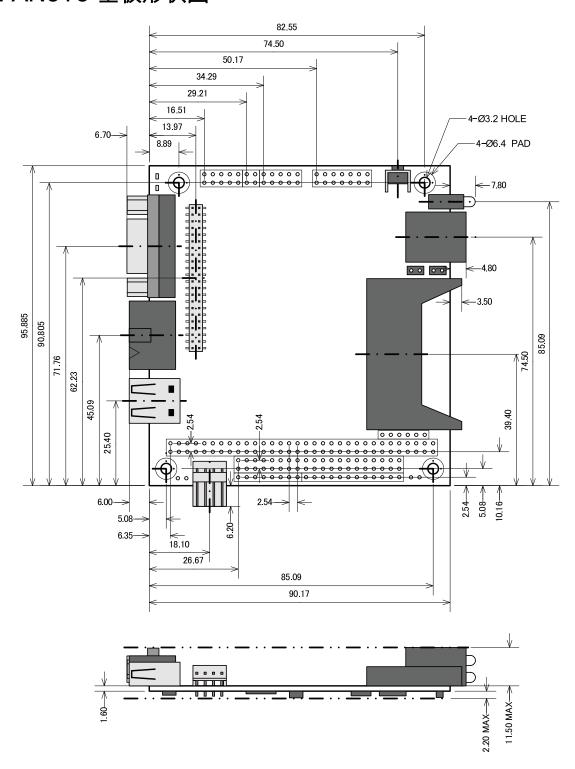


図 7.1 ANO10 の基板形状

7.2. ANO11 基板形状図

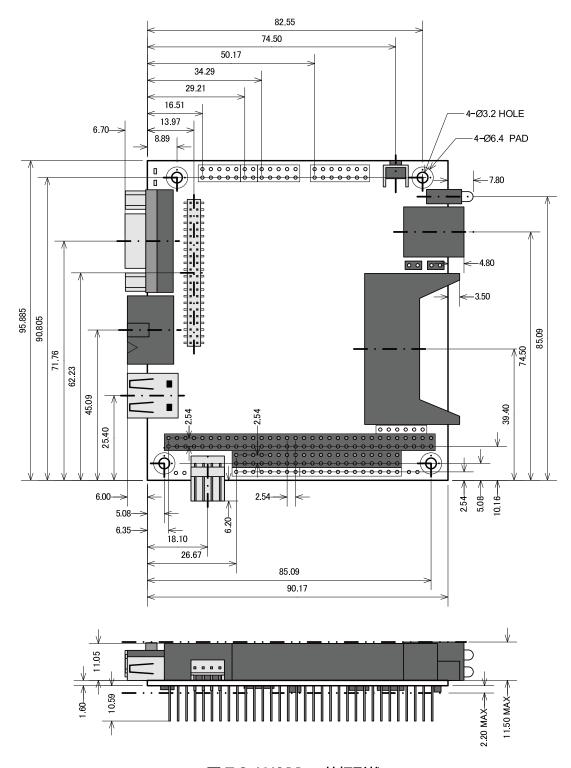


図 7.2 ANO11 の基板形状

改訂履歴

バージョン	年月日	改訂内容
1.0.0	2004.12.18	· 初版発行
1.0.1	2005.2.10	 「表 3.1. Armadillo-9 ボード仕様」の GPIO の数を修正 「表 4.1. Armadillo-9 物理メモリマップ」の SDRAM のメモリマップを修正 「6.2. 外部割込みについて」 の記述を修正 ドキュメント内の誤植を修正
1.0.2	2005.2.21	 ・「表 5.2. CON1 信号配列」 の記述を修正 ・「表 5.7. CON5 信号配列」 の記述を修正 ・「5.7. CON6(EP9315 JTAG)」 について、表中の記述を修正 ・「表 5.11. CON10 信号配列」 の記述を修正 ・ドキュメント内の誤植を修正
1.0.3	2005.4.18	 「5.2. CON1(シリアルインターフェース 1)」 について記述追加 「5.4. CON3(USB インターフェース)」 について記述追加 「5.11. CON10(コンパクトフラッシュ)」 について記述追加 「図 5.4. PC/104 バスアクセスタイミング」 のリードタイミングの記述追加 「表 5.24. コネクタ/スイッチ型式の一覧」 の記述を変更 「図 7.1. AN010 の基板形状」 の寸法線を修正 ドキュメント内の誤植を修正
1.0.4	2005.7.5	 「表 3.1. Armadillo-9 ボード仕様」 に消費電力、使用温度範囲、耐振動性を追加 「5.5. CON4(パラレルインターフェース)」 について記述追加 「5.6. CON5(パラレルインターフェース)」 について記述追加 「6.3. LED(D1, D2)」 に D2 の説明を追加
1.0.5	2005.10.11	・「表 5.16. CON14 信号配列」 の EXTIRQ の記述を修正 ・「6.1.3. PC/104 の割り込みコントローラの仕組み」について記述 追加 ・「6.2. 外部割込みについて」 の記述追加 ・ドキュメント内の誤植を修正
1.0.6	2006.1.25	・「表 5.9. 各モードにおけるピンの機能」 の記述を修正 ・「6.4. カレンダ時計(Real Time Clock)」 について記述追加
1.0.7	2007.7.20	 ドキュメントプロパティのタイトルと作成者を修正 「表 3.1. Armadillo-9 ボード仕様」の使用温度範囲を修正 「表 3.1. Armadillo-9 ボード仕様」、「5.2. CON1(シリアルインターフェース 1)」、「5.3. CON2(シリアルインターフェース 2)」の最大ボーレートを修正 「図 5.1. 各種インターフェースの配置」にピン配置図を追加 「5.12. CON11(LAN コネクタ)」に PHY の割り込み信号についての記述を追加 「6.3. LED(D1, D2)」に「6.3.1. 基板リビジョン E 以前のLED(D2)仕様」と「6.3.2. 基板リビジョン E 以後のLED(D2)仕様」を追加 「Flash メモリ」を「フラッシュメモリ」に統一
1.0.8	2007.9.14	・「2.2. 保証に関する注意事項」を追加・「2.2. 取扱い上の注意事項」 に改造した場合の保証について追加・「5.2. CON1(シリアルインターフェース 1)」 の記述を変更
1.0.9	2007.10.19	・「5.2. CON1(シリアルインターフェース 1)」 の記述を変更

1.0.10	2007.12.14	・表紙と「1. はじめに」 に ANO11 (PC104 コネクタ実装品)の記載を追加・「7. 基板形状図」 を「7.1. ANO10 基板形状図」 と「7.2. ANO11 基板形状図」 の二つに変更
1.0.11	2008.3.15	・「6.2. 外部割込みについて」 に注意事項を追加 ・「図 6.2. EXTIRQ の接続」 に抵抗値の記述追加
1.0.12	2008.9.26	出力電圧の精度を追記タイトルを英語表記からカタカナ表記に「6.4. カレンダ時計(Real Time Clock)」RTC バックアップ用バッテリに関する注意事項を追記
1.0.13	2008.12.25	 ・下記の画像形式を SVG に変更 ・・「図 3.1. Armadillo-9 ブロック図」 ・「図 5.2. PC/104 バスのメモリ空間」 ・「図 7.1. AN010 の基板形状」 ・「図 7.2. AN011 の基板形状」
1.1.0	2009.03.19	・「1. はじめに」、「2. 注意事項」 構成変更 ・誤記、表記ゆれ修正
1.1.1	2009.07.17	・「5.16. J1, J2(PC/104 準拠拡張バス)」、「表 5.17. J1 信号配列 (1)」、「表 5.18. J1 信号配列(2)」PC/104 情報について修正 ・本文のレイアウト統一 ・表記ゆれを修正
1.1.2	2009.07.29	・製品保証に関する記載を http://www.atmark-techno.com/ support/warranty-policy に移動(2009/08/03 適用)
1.1.3	2010.01.29	 ・本文のレイアウト統一 ・「表 5.1. 各種インターフェースの内容」「表 5.21. LED(D5,D6) の 状態」「表 5.22. LED(D14) の状態」「表 5.24. コネクタ/スイッチ型式の一覧」「表 5.25. LED型式の例」へッダの「記号」を「部品番号」に変更 ・VGA コネクタの名称を「D-Sub15 ピン、3 列」から「ミニ D-Sub15 ピン」に修正 ・表記ゆれを修正
1.1.4	2011.03.25	・「2. 注意事項」を全面的に変更・会社住所変更
1.1.5	2011.03.25	・「図 6.1. PC/104 の割り込みコントローラの仕組み」を変更し、マスクビットが"1"の場合の説明を追加・「表 5.17. J1 信号配列(1)」 ~ 「表 5.20. J2 信号配列(2)」に注釈を追加
1.1.6	2011.10.21	・Web サイトの名称を変更
	•	

Armadillo-9 ハードウェアマニュアル Version 1.1.6 2011/10/21

株式会社アットマークテクノ

060-0035 札幌市中央区北 5 条東 2 丁目 AFT ビル TEL 011-207-6550 FAX 011-207-6570